KL divergence or relative entropy

Two pmfs $\mathrm{p}(x)$ and $\mathrm{q}(x)$:

$$
\begin{equation*}
D(\mathrm{p} \| \mathrm{q})=\sum_{x \in X} \mathrm{p}(x) \log \frac{\mathrm{p}(x)}{\mathrm{q}(x)} \tag{5}
\end{equation*}
$$

Say $0 \log \frac{0}{\mathrm{q}}=0$, otherwise $\mathrm{p} \log \frac{\mathrm{p}}{0}=\infty$.

$$
\begin{equation*}
D(\mathrm{p} \| \mathrm{q})=E_{\mathrm{p}}\left(\log \frac{\mathrm{p}(X)}{\mathrm{q}(X)}\right) \tag{6}
\end{equation*}
$$

$$
\begin{equation*}
I(X ; Y)=D(\mathrm{p}(x, y) \| \mathrm{p}(x) \mathrm{p}(y)) \tag{7}
\end{equation*}
$$

- Measure of how different two probability distributions are
- The average number of bits that are wasted by encoding events from a distribution p with a code based on a not-quite-right distribution q .
- $D(\mathrm{p} \| \mathrm{q}) \geq 0 ; D(\mathrm{p} \| \mathrm{q})=0$ iff $\mathrm{p}=\mathrm{q}$
- Not a metric: not commutative, doesn't satisfy triangle equality
[Slide on $D(p \| q)$ vs $D(q \| p)$]

Cross entropy

- Entropy = uncertainty
- Lower entropy = determining efficient codes $=$ knowing the structure of the language $=$ good measure of model quality
- Entropy = measure of surprise
- How surprised we are when w follows h is pointwise entropy:

$$
\begin{aligned}
& H(w \mid h)=-\log _{2} \mathrm{p}(w \mid h) \\
& \mathrm{p}(w \mid h)=1 ? \mathrm{p}(w \mid h)=0
\end{aligned}
$$

- Total surprise:

$$
\begin{aligned}
H_{\text {total }} & =-\sum_{j=1}^{n} \log _{2} \mathrm{~m}\left(w_{j} \mid w_{1}, w_{2}, \ldots, w_{j-1}\right) \\
& =-\log _{2} \mathrm{~m}\left(w_{1}, w_{2}, \ldots, w_{n}\right)
\end{aligned}
$$

Formalizing through cross-entropy

- Our model of language is $\mathrm{q}(x)$. How good a model is it?
- Idea: use $D(\mathrm{p} \| \mathrm{q})$, where p is the correct model.
- Problem: we don't know p.
- But we know roughly what it is like from a corpus
- Cross entropy:

$$
\begin{align*}
H(X, \mathrm{q}) & =H(X)+D(\mathrm{p} \| \mathrm{q}) \tag{8}\\
& =-\sum_{x} \mathrm{p}(x) \log \mathrm{q}(x) \\
& =E_{\mathrm{p}}\left(\log \frac{1}{\mathrm{q}(x)}\right) \tag{9}
\end{align*}
$$

- Cross entropy of a language $L=\left(X_{i}\right) \sim$ $\mathrm{p}(\mathrm{x})$ according to a model m :

$$
H(L, \mathrm{~m})=-\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{x_{1 n}} \mathrm{p}\left(x_{1 n}\right) \log \mathrm{m}\left(x_{1 n}\right)
$$

- If the language is 'nice':

$$
\begin{equation*}
H(L, \mathrm{~m})=-\lim _{n \rightarrow \infty} \frac{1}{n} \log \mathrm{~m}\left(x_{1 n}\right) \tag{10}
\end{equation*}
$$

I.e., it's just our average surprise for large n :

$$
\begin{equation*}
H(L, \mathrm{~m}) \approx-\frac{1}{n} \log \mathrm{~m}\left(x_{1 n}\right) \tag{11}
\end{equation*}
$$

- Since $H(L)$ is fixed if unknown, minimizing cross-entropy is equivalent to minimizing $D(\mathrm{p} \| \mathrm{m})$
- Providing: independent test data; assume $L=\left(X_{i}\right)$ is stationary [does't change over time], ergodic [doesn't get stuck]

Entropy of English text

27 letter alphabet

Cross entropy (bits)
zeroth order
first order
second order
Shannon's experiment 1.3 (1.34)

Perplexity

$$
\begin{aligned}
\operatorname{perplexity}\left(x_{1 n}, \mathrm{~m}\right) & =2^{H\left(x_{1 n}, \mathrm{~m}\right)} \\
& =\mathrm{m}\left(x_{1 n}\right)^{-\frac{1}{n}}
\end{aligned}
$$

