

Locomotion Gates with Polypod, Mark Yim, Stanford University, ICRA 1994 video proceedings

Jacobian

- Differential Motion
- Linear & Angular Motion
- Velocity Propagation
- Explicit Form
- Static Forces

Orientation: Direction Cosines

$$\begin{aligned}
x_{R} &= \begin{bmatrix} r_{1}(q) \\ r_{2}(q) \\ r_{3}(q) \end{bmatrix} \\
\dot{x}_{R} &= \begin{pmatrix} \dot{r}_{1} \\ \dot{r}_{2} \\ \dot{r}_{3} \end{pmatrix}_{(9x1)} = \begin{bmatrix} \frac{\partial \tilde{r}_{1}}{\partial q_{1}} & \cdots & \frac{\partial \tilde{r}_{1}}{\partial q_{6}} \\ \frac{\partial \tilde{r}_{2}}{\partial q_{1}} & \cdots & \frac{\partial \tilde{r}_{2}}{\partial q_{6}} \\ \frac{\partial \tilde{r}_{3}}{\partial q_{1}} & \cdots & \frac{\partial \tilde{r}_{3}}{\partial q_{6}} \end{bmatrix} \begin{bmatrix} \dot{q}_{1} \\ \dot{q}_{2} \\ \vdots \\ \dot{q}_{6} \end{pmatrix}_{(9x6)}
\end{aligned}$$

Jacobian for X

$$\dot{x}_{P} = J_{X_{P}}(q)\dot{q}$$
 $\dot{x}_{R} = J_{X_{R}}(q)\dot{q}$
 $\begin{pmatrix} \dot{x}_{P} \\ \dot{x}_{R} \end{pmatrix} = \begin{pmatrix} J_{X_{P}}(q) \\ J_{X_{R}}(q) \end{pmatrix}\dot{q}$
Cartesian & Direction Cosines
 $\dot{X}_{(12x1)} = J_{X}(q)_{(12x6)}\dot{q}_{(6x1)}$
The Jacobian is dependent on the representation

Examples

$$\star x_{R} = \begin{pmatrix} \alpha \\ \beta \\ \gamma \end{pmatrix}; E_{R}(x_{R}) = \begin{pmatrix} -\frac{s\alpha.c\beta}{s\beta} & \frac{c\alpha.c\beta}{s\beta} & 1 \\ c\alpha & s\alpha & 0 \\ \frac{s\alpha}{s\beta} & -\frac{c\alpha}{s\beta} & 0 \end{pmatrix}$$

$$\star x_{P} = \begin{pmatrix} x \\ y \\ z \end{pmatrix}; E_{P}(x_{P}) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Jacobian for X
Given a representation
$$x = \begin{bmatrix} x_p \\ x_R \end{bmatrix}$$

 $\dot{x} = J_x(q) \dot{q}$
 $J_x(q) = E(x) J_0(q)$
Basic Jacobian $\begin{pmatrix} v \\ w \end{pmatrix} = J_0(q) \dot{q}$

$$J = \begin{pmatrix} J_{XP} \\ J_{XR} \end{pmatrix} = \begin{pmatrix} E_P & | & 0 \\ 0 & | & E_R \end{pmatrix} \begin{pmatrix} J_v \\ J_w \end{pmatrix}$$
$$\underbrace{J(q) = E(X) & J_0(q)}{\begin{pmatrix} v \\ w \end{pmatrix} = J_0(q) \dot{q}}$$
$$\underbrace{\begin{pmatrix} v \\ w \end{pmatrix} = J_0(q) \dot{q}}$$
With Cartesian Coordinates
$$E_P = I_3 \ ; \ J_{XP} = J_v \ ; \quad \text{and} \ E = \begin{pmatrix} I & | & 0 \\ 0 & | & E_R \end{pmatrix}$$

Position Representations
Cartesian Coordinates
$$(x, y, z)$$

 $E_p(X) = I_3$
Cylindrical Coordinates (ρ, θ, z)
Using $(x \ y \ z)^T = (\rho \cos \theta \ \rho \sin \theta \ z)^T$
 $E_p(X) = \begin{pmatrix} \cos \theta & \sin \theta & 0 \\ -\sin \theta / \rho & \cos \theta / \rho & 0 \\ 0 & 0 & 1 \end{pmatrix}$

Example

$$V_{i+1} = v_i + \omega_i \times P_{i+1}$$

 $v_{i+1} = v_i + \omega_i \times P_{i+1}$
 $v_{i+1} = v_i + \omega_i \times P_{i+1}$
 $v_{P_3 \neq j \dot{\theta}_3}$
 $v_{P_1} = 0$
 $v_{P_2} = v_{P_1} + \omega_1 \times P_2$
 $v_{P_3} = v_{P_2} + \omega_2 \times P_3$
 $v_{P_2} = 0 + \begin{bmatrix} 0 & -\dot{\theta}_1 & 0 \\ \dot{\theta}_1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} l_1 \cdot c_1 \\ l_1 \cdot s_1 \\ 0 \end{bmatrix} = \begin{bmatrix} -l_1 \cdot s_1 \\ l_1 \cdot c_1 \\ 0 \end{bmatrix} \cdot \dot{\theta}_1$

$${}^{0}\boldsymbol{v}_{P_{3}} = {}^{0}\boldsymbol{v}_{P_{2}} + {}^{0}\boldsymbol{\omega}_{2} \times {}^{0}\boldsymbol{P}_{3}$$

$${}^{0}\boldsymbol{v}_{P_{3}} = \begin{bmatrix} -l_{1} \cdot s_{1} \\ l_{1} \cdot c_{1} \\ 0 \end{bmatrix} \cdot \dot{\boldsymbol{\theta}}_{1} + \begin{bmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \cdot (\dot{\boldsymbol{\theta}}_{1} + \dot{\boldsymbol{\theta}}_{2}) \cdot {}^{0}\boldsymbol{P}_{3}$$

$$= \begin{bmatrix} -l_{1} \cdot s_{1} \\ l_{1} \cdot c_{1} \\ 0 \end{bmatrix} \cdot \dot{\boldsymbol{\theta}}_{1} + \begin{bmatrix} -l_{2} \cdot s_{12} \\ l_{2} \cdot c_{12} \\ 0 \end{bmatrix} \cdot (\dot{\boldsymbol{\theta}}_{1} + \dot{\boldsymbol{\theta}}_{2}) \begin{bmatrix} l_{2} \cdot c_{12} \\ l_{2} \cdot s_{12} \\ 0 \end{bmatrix}$$

$${}^{0}\boldsymbol{\omega}_{3} = (\dot{\boldsymbol{\theta}}_{1} + \dot{\boldsymbol{\theta}}_{2} + \dot{\boldsymbol{\theta}}_{3}) \cdot {}^{0}\boldsymbol{Z}_{0}$$

$$v = [\epsilon_{1} Z_{1} + \overline{\epsilon}_{1} (Z_{1} \times P_{1n})]\dot{q}_{1} + \cdots + [\epsilon_{n-1} Z_{n-1} + \overline{\epsilon}_{n-1} (Z_{n-1} \times P_{(n-1)n})]\dot{q}_{n-1} + \epsilon_{n} Z_{n}\dot{q}_{n} \begin{bmatrix} \dot{q}_{1} \\ \dot{q}_{2} \\ \vdots \\ \dot{q}_{2} \end{bmatrix}$$
$$v = [\epsilon_{1} Z_{1} + \overline{\epsilon}_{1} (Z_{1} \times P_{1n}) \quad \epsilon_{2} Z_{2} + \overline{\epsilon}_{2} (Z_{2} \times P_{2n}) \quad \cdots] \begin{bmatrix} \dot{q}_{2} \\ \vdots \\ \dot{q}_{n} \end{bmatrix}$$
$$\omega = \overline{\epsilon}_{1} Z_{1} \dot{q}_{1} + \overline{\epsilon}_{2} Z_{2} \dot{q}_{2} + \cdots + \overline{\epsilon}_{n} Z_{n} \dot{q}_{n} \begin{bmatrix} \dot{q}_{1} \\ \dot{q}_{2} \\ \vdots \\ \dot{q}_{n} \end{bmatrix}$$
$$\omega = [\overline{\epsilon}_{1} Z_{1} \quad \overline{\epsilon}_{2} Z_{2} \quad \cdots \quad \overline{\epsilon}_{n} Z_{n}] \begin{bmatrix} \dot{q}_{2} \\ \vdots \\ \dot{q}_{n} \end{bmatrix}$$

The Jacobian

$$J = \left(\frac{J_{\nu}}{J_{w}}\right)$$
Matrix J_{ν} (direct differentiation)
 $\nu = \begin{pmatrix} \dot{x} \\ \dot{y} \\ \dot{z} \end{pmatrix} = \dot{x}_{p} = \frac{\partial x_{p}}{\partial q_{1}} \cdot \dot{q}_{1} + \frac{\partial x_{p}}{\partial q_{2}} \cdot \dot{q}_{2} + \dots + \frac{\partial x_{p}}{\partial q_{n}} \cdot \dot{q}_{n}$

$$J_{\nu} = \left(\frac{\partial x_{p}}{\partial q_{1}} \quad \frac{\partial x_{p}}{\partial q_{2}} \quad \dots \quad \frac{\partial x_{p}}{\partial q_{n}}\right)$$

Jacobian in a Frame
Vector Representation

$$J = \begin{pmatrix} \frac{\partial x_{P}}{\partial q_{1}} & \frac{\partial x_{P}}{\partial q_{2}} & \cdots & \frac{\partial x_{P}}{\partial q_{n}} \\ \overline{e_{1}}.Z_{1} & \overline{e_{2}}.Z_{2} & \cdots & \overline{e_{n}}.Z_{n} \end{pmatrix}$$
In {0}

$${}^{0}J = \begin{pmatrix} \frac{\partial^{0} x_{P}}{\partial q_{1}} & \frac{\partial^{0} x_{P}}{\partial q_{2}} & \cdots & \frac{\partial^{0} x_{P}}{\partial q_{n}} \\ \overline{e_{1}}.{}^{0}Z_{1} & \overline{e_{2}}.{}^{0}Z_{2} & \cdots & \overline{e_{n}}.{}^{0}Z_{n} \end{pmatrix}$$

J in Frame {0}
⁰Z_i = ⁰_iR ⁱZ_i; ⁱZ_i = Z =
$$\begin{bmatrix} 0\\0\\1 \end{bmatrix}$$

⁰J = $\begin{pmatrix} \frac{\partial}{\partial q_1} ({}^{0}x_p) & \frac{\partial}{\partial q_2} ({}^{0}x_p) & \cdots & \frac{\partial}{\partial q_n} ({}^{0}x_p) \\ \overline{\epsilon_1} . ({}^{0}_1R.Z) & \overline{\epsilon_2} . ({}^{0}_2R.Z) & \cdots & \overline{\epsilon_n} . ({}^{0}_nR.Z) \end{pmatrix}$

Stanford Scheinman Arm
${}_{1}^{0}T = \begin{bmatrix} c_{1} & -s_{1} & 0 & 0\\ s_{1} & c_{1} & 0 & 0\\ 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 1 \end{bmatrix}$
${}_{2}^{1}T = \begin{bmatrix} c_{2} & -s_{2} & 0 & 0\\ 0 & 0 & 1 & d_{2}\\ -s_{2} & c_{2} & 0 & 0\\ 0 & 0 & 0 & 1 \end{bmatrix}$
${}^{2}_{3}T = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & -1 & -d_{3} \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$

Stanford	l Sch	einm	an	Arm Jo	acob	ian	
${}^{0}J = \left(\frac{\partial^{0}}{\partial a}\right)$	$\frac{x_P}{q_1}$	$\frac{\partial^0 x_F}{\partial q_2}$	<u>)</u>	$\frac{\partial^0 x_p}{\partial q_3}$	0	0	0
C ⁰ Z	21	${}^{0}Z_{2}$		0	⁰ Z ₄	${}^{0}Z_{5}$	$^{0}Z_{6}$
$[-c_1d_2 - s_1s_2d_3]$	$c_1c_2d_3$	C_1S_2	0	0			0 -
$-s_1d_2 + c_1s_2d_3$	$s_1c_2d_3$	$s_1 s_2$	0	0			0
0	$-s_2d_3$	c_2	0	0			0
0	$-s_1$	0	$c_{1}s_{2}$	$-c_1c_2s_4 -$	$s_1 c_4$	$c_1 c_2 c_4 s_5 - s_5$	$s_1s_4s_5 + c_1s_2c_5$
0	c_1	0	$s_{1}s_{2}$	$-s_1c_2s_4 +$	$c_{1}c_{4}$	$s_1 c_2 c_4 s_5 + a_5$	$c_1 s_4 s_5 + s_1 s_2 c_5$
1	0	0	c_2	$s_{2}s_{4}$		$-s_2c_4$	$s_5 + c_5 c_2$

Kinematic Singularity

$${}^{B}J = \begin{pmatrix} {}^{B}R & 0 \\ 0 & {}^{B}R \end{pmatrix} {}^{A}J$$

$$det[{}^{B}J] = det[{}^{A}J]$$

$$det({}^{i}J) = det({}^{j}J)$$

$${}^{0}J_{E} = \begin{bmatrix} -l_{1}s_{1} - l_{2}s_{12} - l_{3}s_{123} & -l_{2}s_{12} - l_{3}s_{123} & -l_{3}s_{123} \\ l_{1}c_{1} + l_{2}c_{12} + l_{3}c_{123} & l_{2}c_{12} + l_{3}c_{123} & l_{3}c_{123} \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & 1 & 1 \end{bmatrix}$$
$${}^{0}J_{E} = \begin{pmatrix} -l_{1}s_{1} - l_{2}s_{12} - l_{3}s_{123} & -l_{2}s_{12} - l_{3}s_{123} & -l_{3}s_{123} \\ l_{1}c_{1} + l_{2}c_{12} + l_{3}c_{123} & l_{2}c_{12} + l_{3}c_{123} & l_{3}c_{123} \\ 1 & 1 & 1 \end{bmatrix}$$

$\begin{bmatrix} 0 \\ -c_1 d_2 - s_1 s_2 d_3 & c_1 c_2 \\ -s_1 d_2 + c_1 s_2 d_3 & s_1 c_2 \\ -s_1 d_2$	${}^{0}Z_{2}$	0	0	⁰ Z ₄	⁰ Z ₅	$^{0}Z_{6}$
$\begin{bmatrix} -c_1d_2 - s_1s_2d_3 & c_1c_2d_3 \\ -s_1d_2 + c_1s_2d_2 & s_1c_2d_3 \end{bmatrix}$	$l_2 c_1 s_2$	0				
$-s_1d_2 + c_1s_2d_2 = s_1c_2d_2$	5 1 2	0	0			0
I 2 10203 01020	$d_3 s_1 s_2$	0	0			0
0 -s ₂ c	$d_3 c_2$	0	0			0
$0 -s_1$	0	$c_1 s_2$	$-c_1c_2s_4$	$-s_{1}c_{4}$	$c_1 c_2 c_4 s_5 -$	$s_1 s_4 s_5 + c_1 s_2$
$0 c_1$	0	$s_1 s_2$	$-s_1c_2s_4$	$+ c_1 c_4$	$s_1c_2c_4s_5 +$	$c_1 s_4 s_5 + s_1 s_2$
1 0	0	c_2	<i>s</i> ₂ <i>s</i>	4	$-s_2c_4$	$_{4}s_{5} + c_{5}c_{2}$

Stanford Scheinman Arm Jacobian							
		θ ₅ =	$=k\pi$				
	$\begin{bmatrix} -c_1d_2 - s_1s_2d_3 \\ -s_1d_2 + c_1s_2d_2 \end{bmatrix}$	$c_1 c_2 d_3$ $s_1 c_2 d_3$	$C_1 S_2$ $S_1 S_2$	0 0	0 0	$\begin{bmatrix} 0 \\ 0 \end{bmatrix}$	
7	0	$-s_2d_3$	c_2	0	0	0	
J =	0	$-s_1$	0	$c_1 s_2$	$-c_1c_2s_4-s_1c_4$	$c_1 s_2$	
	0	c_1	0	$s_1 s_2$	$-s_1c_2s_4+c_1c_4$	<i>s</i> ₁ <i>s</i> ₂	
	L 1	0	0	c_2	$s_2 s_4$	c_2	

$$\begin{cases} v_e = v_n - P_{ne} \times \omega_n \\ \omega_e = \omega_n \end{cases}$$
$$\begin{pmatrix} v_e \\ \omega_e \end{pmatrix} = \begin{pmatrix} I - \hat{P}_{ne} \\ O & I \end{pmatrix} \begin{pmatrix} v_n \\ \omega_n \end{pmatrix}$$
$$J_e \dot{q} = \begin{pmatrix} I - \hat{P}_{ne} \\ O & I \end{pmatrix} J_n \dot{q}$$
$$J_e = \begin{pmatrix} I - \hat{P}_{ne} \\ O & I \end{pmatrix} J_n$$

$${}^{i}J = \begin{pmatrix} {}^{i}R & 0 \\ {}^{j}R & 0 \\ 0 & {}^{i}R \end{pmatrix}^{j}J$$
$${}^{0}J_{e} = \begin{pmatrix} {}^{0}R & -{}^{0}R^{n}\hat{P}_{nen}R^{n} \\ {}^{0}R & {}^{0}R \end{pmatrix}^{n}J_{n}$$

Resolved Motion Rate Control (Whitney 72)
$\delta x = J(\theta) \delta \theta$
Outside singularities
$\delta\theta = J^{-1}(\theta)\delta x$
Arm at Configuration $ heta$
$x = f(\theta)$
$\delta x = x_d - x$
$\delta\theta = J^{-1}\delta x$
$ heta^{+}= heta+\delta heta$

