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The Role of Perception in RMM

• Where am I relative to the world?
– sensors: vision, stereo, range sensors, acoustics

– problems: scene modeling/classification/recognition

– integration:  localization/mapping  algorithms (e.g. SLAM)

• What is around me?
– sensors: vision, stereo, range sensors, acoustics, sounds,

smell

– problems: object recognition, structure from x, qualitative
modeling

– integration: collision avoidance/navigation, learning
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The Role of Perception in RMM

• How can I safely interact with environment (including
people!)?
– sensors: vision, range, haptics (force+tactile)
– problems: structure/range estimation, modeling, tracking,

materials, size, weight, inference
– integration: navigation, manipulation, control, learning

• How can I solve “new” problems (generalization)?
– sensors: vision, range, haptics, undefined new sensor
– problems: categorization by function/shape/context/??
– integrate: inference, navigation, manipulation, control,

learning

• Obstacle detection, environment interaction 

•Mapping, registration, localization, recognition

• Manipulation 

Topics Today

• Computational Stereo 

• Feature detection and matching 

• Motion tracking and visual feedback

Techniques

Applications in Robotics:
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What is Computational Stereo?

Viewing the same physical point from 

two different viewpoints allows depth

from triangulation
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Computational Stereo
• Much of geometric vision is based on information from 2 (or

more) camera locations
– hard to recover 3D information from a single 2D image without

extra knowledge
– motion and stereo (multiple cameras) are both common in the

world

• Stereo vision is ubiquitous in nature
– (oddly, nearly 10% of people are stereo blind)

• Stereo involves the following three problems:

1. calibration

2. matching (correspondence problem)

3. reconstruction (reconstruction problem)
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Binocular  Stereo System: Geometry

• GOAL: Passive 2-camera system
using triangulation to generate a
depth map of a world scene.

• Depth map: z=f(x,y) where x,y are
coordinates one of the image
planes and z is the height above
the respective image plane.

– Note that for stereo systems which
differ only by an offset in x, the v
coordinates (projection of y) is the
same in both images!

– Note we must convert from image
(pixel) coordinates to external
coordinates -- requires calibration

X

Y

(0,0,f)

4 intrinsic parameters convert

from pixel to metric values

sx sy cx cy
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Non-verged Binocular Stereo System

Z

X(0,0)                  (b,0)

Z=f
XL XR

Define Disparity:
 D =  (xL - xR)

Z  =  
b sx

     D

Assume: image are scan-line aligned

From perspective projection:
xL = sx X/Z
xR = sx (X - b)/Z
yL = yR = syY/Z
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To increase resolution:
• Increase of the baseline

(B) - size of the system

• Increase of the focal
length (f) - field of view

• Decrease of the pixel-size
(1/sx) - resolution of the
camera

75cm

Stereo-System Accuracy

Z  =  b sx
     D
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Two-Camera Geometry

It is not hard to show that when we rotate the
cameras inward, corresponding points no longer lie

on a scan line
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How to Change Epipolar Geometry

Image rectification is the computation of
an image as seen by a rotated camera

Original  image plane

New image plane
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PlPr

T

Pr = R(Pl – T)

pr
t
 E pl = 0

Note that E is invariant to the scale

of the points, therefore we also have

where p denotes the (metric) image

projection of P

Now if  K denotes the internal

calibration, converting from metric

to pixel coordinates, we have further

that

rr
t K-t

 E K-1 rl = rr
t F rl = 0

where r denotes the pixel coordinates

of p.  F is called the fundamental matrix

Fundamental Matrix Derivation
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Correspondence Problem:

How to find corresponding areas of two camera
images (points, line segments, curves, regions)

Stereo-Based Reconstruction
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MATCHING AND CORRESPONDENCE

• Two major approaches

– feature-based

– region based
In feature-based matching, the idea is

to pick a feature type (e.g. edges),
define a matching criteria (e.g.

orientation and contrast sign), and
then look for matches within a

disparity range
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Results - Reconstruction
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MATCHING AND CORRESPONDENCE

• Two major approaches

– feature-based

– region based

In region-based matching, the
idea is to pick a region in the image
and attempt to find the matching
region in the second image by
maximizing the some measure:
   1. normalized SSD
   2. SAD
   3. normalized cross-correlation
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Match Metric Summary
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MATCH METRIC DEFINITION

Normalized Cross-Correlation
(NCC)

Sum of Squared Differences
(SSD)

Normalized SSD

Sum of Absolute Differences
(SAD)

Zero Mean SAD

Rank

Census

Remember, these 
two are actually 

the same

( ) ( )! "+""
vu

IvduIIvuI

,

_

22

_

11 ),(),(

!"#$%&'(#)%"*+%*,%-%#)(.

Correspondence Search Algorithm

For  i = 1:nrows
   for j=1:ncols

best(i,j) = -1
for k = mindisparity:maxdisparity
   c = ComputeMatchMetric(I1(i,j),I2(i,j+k),winsize)
   if (c > best(i,j))

best(i,j) = c
disparities(i,j) = k

                 end
  end
      end O(nrows * ncols * disparities * winx * winy)
end
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Correspondence Search Algorithm V2

best = -ones(size(im))
disp = zeros(size(im))
for k = mindisparity:maxdisparity

prod = I1(:,overlap) .* I2(:,k+overlap)
CC = conv2(prod,fspecial(‘average’,winsize))
better = CC > best;
disp = better .* k + (1-better).*disp;
best = better .*CC + (1-better).*best;

end

Typically saves O(winx*winy) operations for most any match
metric

!"#$%&'(#)%"*+%*,%-%#)(.

An Additional Twist

• Note that searching from left to right is not the same as searching from
right to left.

• As a result, we can obtain a somewhat independent disparity map by
flipping the images around.

• The results should be the same map up to sign.

• LRCheck:  displr(i,j) = - disprl(i,j+displr(i,j))

d
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Example Disparity Maps
SSD ZNNC
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Real-Time Stereo

REAL-TIME

STEREO SYSTEM

IMAGE

SIZE

FRAME

RATE

RANGE

BINS

METHOD PROCESSOR CAMERAS

INRIA 1993 256x256 3.6 fps 32 Normalized
Correlation

PeRLe-1 3

CMU iWarp 1993 256x240 15 fps 16 SSAD 64 Processor
iWarp Computer

3

Teleos 1995 320x240 0.5 fps 32 Sign
Correlation

Pentium 166 MHz 2

JPL 1995 256x240 1.7 fps 32 SSD Datacube &
68040

2

CMU Stereo
Machine 1995

256x240 30 fps 30 SSAD Custom HW &
C40 DSP Array

6

Point Grey Triclops
1997

320x240 6 fps 32 SAD Pentium II 450
MHz

3

SRI SVS 1997 320x240 12 fps 32 SAD Pentium II 233
MHz

2

SRI SVM II 1997 320x240 30+ fps 32 SAD TMS320C60x
200MHz DSP

2

Interval PARTS
Engine 1997

320x240 42 fps 24 Census
Matching

Custom FPGA 2

CSIRO 1997 256x256 30 fps 32 Census
Matching

Custom FPGA 2

SAZAN 1999 320x240 20 fps 25 SSAD FPGA &
Convolvers

9

Point Grey
Triclops 2001

320x240 20 fps
13 fps

32 SAD Pentium IV
1.4 GHz

2
3

SRI SVS 2001 320x240 30 fps 32 SAD Pentium III
700 MHZ

2
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Applications of Real-Time Stereo

• Mobile robotics
– Detect the structure of ground; detect obstacles; convoying

• Graphics/video
– Detect foreground objects and matte in other objects (super-

matrix effect)

• Surveillance
– Detect and classify vehicles on a street or in a parking

garage

• Medical
– Measurement (e.g. sizing tumors)
– Visualization (e.g. register with pre-operative CT)
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Stereo Example: Obstacle Detection

/$%- 012 *#%*.%0314

5).# )"6 ').7*-1#811"*$10139"#

%-.#9(01.*:;<5= *9"&

)$$10139"#*:><?= *%-.#9(01.
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Obstacle Detection (cont’d)

Observation: Removing the ground plane immediately exposes obstacles
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Applications of Real-Time Stereo
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Other Problems:

• Photometric issues:
– specularities
– strongly non-Lambertian BRDF’s

• Surface structure
– lack of texture
– repeating texture within horopter bracket

• Geometric ambiguities
– as surfaces turn away, difficult to get accurate

reconstruction (affine approximate can help)
– at the occluding contour, likelihood of good match

but incorrect reconstruction !"#$%&'(#)%"*+%*,%-%#)(.

Local vs. Global Matching

Comparative results on images from the University of Tsukuba, provided
by Scharstein and Szeliski [69].  Left to right: left stereo image, ground
truth, Muhlmann et al.’s area correlation algorithm [57], dynamic
programming (similar to Intille and Bobick [36]), Roy and Cox’s maximum
flow [65] and Komolgorov and Zabih’s graph cuts [45].
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Mapping, Localization, Recognition
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Object Recognition: The Problem

Given: A database D of “known” objects and an image I:

    1. Determine which (if any) objects in D appear in I
    2. Determine the pose (rotation and translation) of the object

Segmentation
(where is it 2D)

Recognition
(what is it)

The object recognition conundrum

Pose Est.
(where is it 3D)
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Recognition From Geometry?

Given a database of
objects and an image
determine what, if any
of the objects are 
present in the image.
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Recognition From Appearance?

• Columbia SLAM system:
– can handle databases of 100’s of objects

– single change in point of view

– uniform lighting conditions
Courtesy Shree Nayar, Columbia U.
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Current Best Solution

• Generally view based

• Uses local features and “local” invariance (global is
too weak)

• Uses *lots* of features and some sort of voting

• Also recent attempts to perform “categorical” object
recognition using similar techniques

• Example: recent papers by Schmid, Lowe, Ponce,
Hebert, Perona ...

• Here, we discus SIFT features (Lowe 1999)
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Feature Desiderata

• Features should be distinctive

• Features should be easily detected under changes in
pose, lighting, etc.

• There should be many features per object
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Steps in SIFT Feature Selection
• Scale-space peak selection

• Keypoint localization
– includes rejection due to poor localization
– also perform cornerness check using eigenvalues; reject

those with eigenvalue ratio greater than 10

• Orientation Assignment
– dominant orientation plus any within 80% of dominant

• Build keypoint descriptor

• Normal images yield approx. 2000 stable features
– small objects in cluttered backgrounds require 3-6 features
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Peak Detection

• Find all max and min is LoG images in both space and
scale
– 8 spatial neighbors; 9 scale neighbors
– orientation based on maximum of weighted histogram
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Keypoint Descriptor

!"#$%&'(#)%"*+%*,%-%#)(.

Example
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PDF of Matching
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Feature Matching

• Uses a Hough transform (voting technique)
– parameters are position, orientation and scale for

each training view

– features are matched to closest Euclidean
distance neighbor in database; each database
feature indexed to object and view as well as
location, orientation and scale

– features are linked to adjacent model views; these
links are also followed and accumulated

– implemented using a hash table
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Results

• Matching requires histogramming
followed by alignment
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Ponce&Rothganger: 51 test images with 1 to 5 

of 8 objects present in each image.
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96% recognition rate96% recognition rate
(no false positives)(no false positives)
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Results
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Vision-Based Robot Mapping

• FASTSlam innovations
– Rao-Blackwellized particle filters

• Mapping results for multiple
kilometers

• Laser and vision
– joint issue of IJCV and IJRR

prominently vision-based
SLAM

Se, Lowe, Little, 2003
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RMS Titanic
Leonard & Eustice

0 EKF-based system

0 866 images

0 3494 camera constraints

0 Path length 3.1km 2D / 3.4km 3D

0 Convex hull > 3100m2

0 344 min. data / 39 min. ESDF*
*excludes image registration time

Cathedral of Saint Pierre

(Peter Allen, Columbia University)

Reconstruction

3D Model Building
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VISUAL TRACKING
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What Is Visual Tracking?

Hager & Rasmussen 98

Bascle and Blake 98

Black and Yacoob 95Hager & Belhumeur 98

Bregler and Malik 98
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Principles of Visual Tracking
I0 It

From I0, It+1 and pt compute 5pt+1Incremental Estimation:

|| I0  - g(It+1, pt+1) ||
2  ==> min

pt

It = g(I0, pt)Variability model:
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Principles of Visual Tracking
I0 It

From I0, It+1 and pt compute 5pt+1Incremental Estimation:

pt

It = g(I0, pt)Variability model:

Visual Tracking = Visual Stabilization
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Tracking Cycle

• Prediction
– Prior states predict new

appearance

• Image warping
– Generate a “normalized

view”

• Estimation
– Compute change in

parameters from
changes in the image

• State integration
– Apply correction to state

Model

Inverse

Image

Warping

5p

p

-

Reference
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Some Background

• Perspective (pinhole) camera
– X’ = x/z
– Y’ = y/z

• Para-perspective
– X’ = s x
– Y’ = s y

• Lambert’s law
– B = a cos(th)

surface

normal

th
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Regions: A More Interesting
Case

u’i  =  A ui  + dPlanar Object  => Affine motion model:

Warping

It = g(pt, I0)
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• Model

–    I0 =  g(pt, It )         (image I, variation model g,
parameters p)

–  & I/dt =  M(pt, It) &p/dt **  (local linearization M)

• Define an error

– et+1  =  g(pt, It ) - I0

• Close the loop

– pt+1 = pt - (M
T M)-1 MT   et+1  where  M = M(pt,It)

Stabilization Formulation

M is N x m and 
is time varying!
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On The Structure of M

u’i  =  A ui  + dPlanar Object  -> Affine motion model:

X                 Y          Rotation      Scale         Aspect       Shear
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3D Case : Global Geometry

ui  =  A ui  +  b zi  + dNon-Planar  Object:

Observations:

–  Image coordinates lie in a
   4D space

–  3D subspace can be fixed

–  Motion in two images gives
affine
   structure
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3D Case: Local Geometry

Non-Planar  Object:

x           y         rot z      scale     aspect   rot x      rot y

ui  =  A ui  +  b zi  + d
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3D Case: Illumination Modeling

Observations:

–  Lambertian object, single
source, no
   cast shadows => 3D
image space

–  With shadows => a cone

–  Empirical evidence
suggests 5 to 6
    basis images suffices

Non-Planar  Object:It = B 9*@ *!A
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Handling Occlusion

5p

p

Image

Warping
-

Reference

Model

Inverse

Weighting

B
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A Complete Implementation Extension: Layered
Systems

(Kentaro Toyama, MSR)

color thresholdingcolor thresholding

blob trackingblob tracking

template-based trackingtemplate-based tracking

target statetarget state

full configuration spacefull configuration space

algorithmic layersalgorithmic layers

feature-based trackingfeature-based tracking
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Layered System: Example

Green: tracking        Red: searching
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Motion, Tracking, Control

Conventional image-plane SSD                   3D SSD

M. Jagersand, U. Alberta

G. Hager, JHU
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Adding Kinematics
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 Vision-Based Control

How should this be programmed?

?
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 Vision-Based Control

Tobject

Solution #1:
Calibrate camera to robot
Use stereo coordinates
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 Vision-Based Control

Solution #2:
Compute position of both 
robot and object

e = Tobj- Trob
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 Vision-Based Control

Solution #3:
Compute errors based on 
images of robot and object

e = fobj- fob
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An Observation

Compute:
    de/dt = Je dq/dt
    dq/dt = - Je

-1 e(y1, y2)

Result:
     1. If stable, e->0.  This implies T->0.
     2. Accuracy is calibration independent.

Given:
     a desired kinematic constraint T(f1,f2) = 0

     an encoding with e(y1,y2) = 0 iff T(f1,f2) = 0
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More Formally

Image encoding  E
Image features   y
New task            E(y) = 0

Set of cameras  !
Actual camera  C ! !
Observation      y = C(f)

+: C= *D

A

E: F= *D *A

Task function T
Feature configuration f
Task: T(f) = 0

When can we ensure

How can we specify all such tasks?
!"#$%&'(#)%"*+%*,%-%#)(.

Example Camera Model Classes

?all [C0] ºG C :C injective on H , Im C = Im C0I

Given C0 injective on H

?proj [C0] º ? all[C0] È G set of all projective 2-camera modelsI

“weakly calibrated projective cameras”

Given projective 2-camera C0 inj. on H

?persp [C0] º ? all[C0] È G set of all pin-hole 2-camera modelsI

 “weakly calibrated perspective cameras”

Given pin-hole 2-camera C0 inj. on H

Fix a viewspace H  

“weakly calibrated injective cameras”
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Weakly Calibrated Sets

Injective cameras:
or

Invariance on

*****Jall ºG *group of all bijectionsI

Projective cameras:

Invariance on

*****Jproj ºG group of projective transformationI

Perspective cameras:

Invariance on

****J*pin-hole ºG *group of rigid body transformations with scalingI
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Some Examples
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Some Examples
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Some Examples

 Complex Geometry  Deformable Objects Complex Objects

Future Challenges

The pieces are starting to appear,

why don’t we see real systems?

 Complex
  Clutter

MaterialsCategories

Complex Environments



Recovering Geometry, Egomotion, Individual/Group Trajectories, and Activities

Challenge: Highly Dynamic Environments
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Human Interaction

• Motivators
– aging population
– enabling disabled
– huge market

• Challenges (research)
– highly integrative
– unstructured problems
– adaptivity

• Challenges (market)
– high initial investment
– safety/reliability
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Generalization and Learning

• Clear value to “data-driven” approaches

• Rapid progress in recent years in
– dimensional reduction
– unsupervised modeling
– supervised methods

• Current methods still do not
– scale well
– make use of problem structure
– cannot be validated
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Cross-Cutting Challenges

• Large-scale verification of algorithms
– data repositories
– accepted evaluation methodologies

• System integration
– almost no one has the resources to do it all and do it right

• Facing the real world
– > 99% reliability
– manufacturable
– scalable


