Perception & Sensing in Robotic Mobility and Manipulation

Gregory D. Hager Laboratory for Computation, Sensing, and Control Department of Computer Science Johns Hopkins University

The Role of Perception in RMM

- Where am I relative to the world?
 - sensors: vision, stereo, range sensors, acoustics
 - problems: scene modeling/classification/recognition
 - integration: localization/mapping algorithms (e.g. SLAM)

What is around me?

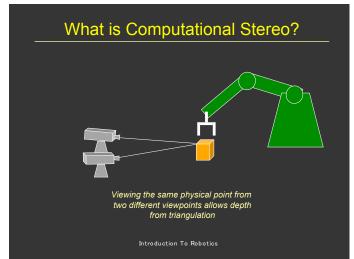
- sensors: vision, stereo, range sensors, acoustics, sounds, smell
- problems: object recognition, structure from x, qualitative modeling
- integration: collision avoidance/navigation, learning

Introduction To Robotics

The Role of Perception in RMM

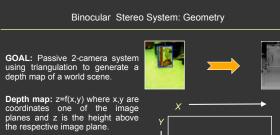
- How can I safely interact with environment (including people!)?
 - sensors: vision, range, haptics (force+tactile)
 - problems: structure/range estimation, modeling, tracking, materials, size, weight, inference
 - integration: navigation, manipulation, control, learning
- How can I solve "new" problems (generalization)?
 sensors: vision, range, haptics, undefined new sensor
 - problems: categorization by function/shape/context/??
 - integrate: inference, navigation, manipulation, control, learning

Introduction To Robotics


Topics Today

Techniques

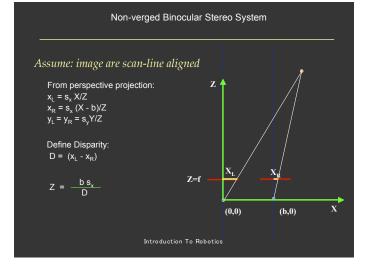
- Computational Stereo
- Feature detection and matching
- Motion tracking and visual feedback

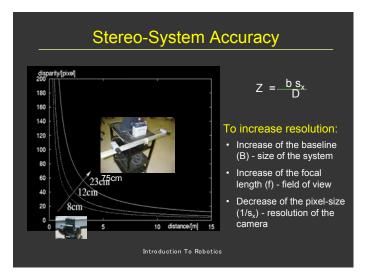

Applications in Robotics:

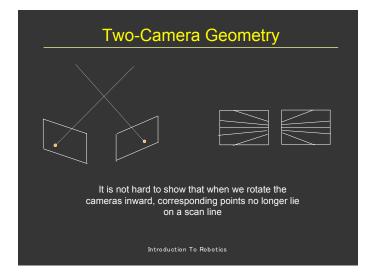
- Obstacle detection, environment interaction
- Mapping, registration, localization, recognition
- Manipulation

Computational Stereo

- Much of geometric vision is based on information from 2 (or more) camera locations
 - hard to recover 3D information from a single 2D image without extra knowledge
 - motion and stereo (multiple cameras) are both common in the world
- Stereo vision is ubiquitous in nature – (oddly, nearly 10% of people are stereo blind)
- Stereo involves the following three problems:
 - 1. calibration
 - 2. matching (correspondence problem)
 - 3. reconstruction (reconstruction problem) Introduction To Robotics

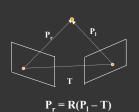

S_X S_y C_X C_y Introduction To Robotics


Note that for stereo systems which differ only by an offset in x, the v coordinates (projection of y) is the same in both images!


Note we must convert from image (pixel) coordinates to external coordinates -- requires calibration

• (0,0,f)

4 intrinsic parameters convert from pixel to metric values

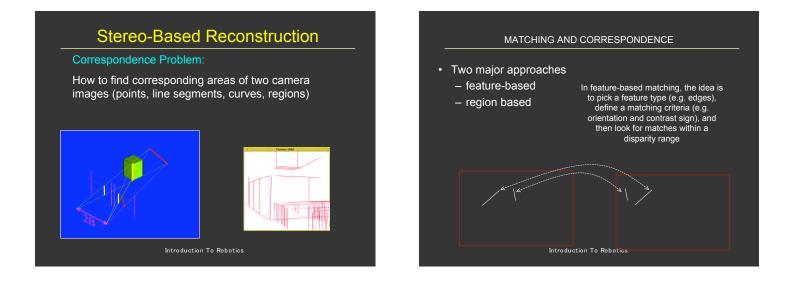


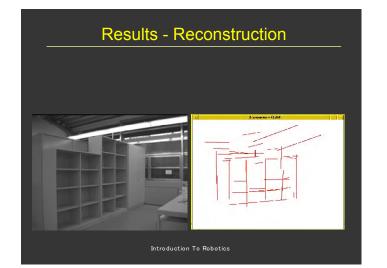
How to Change Epipolar Geometry Image rectification is the computation of an image as seen by a rotated camera $\overbrace{Vew image plane}^{Vew image plane}$

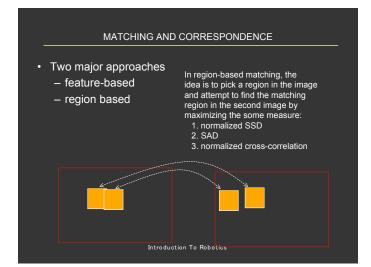
Fundamental Matrix Derivation

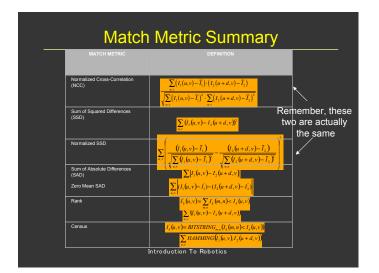
Note that E is invariant to the scale of the points, therefore we also have

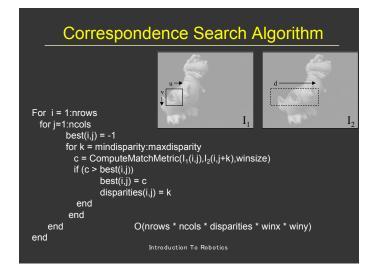
$\mathbf{p_r}^t \mathbf{E} \mathbf{p_l} = \mathbf{0}$


where p denotes the (metric) image projection of P


Now if K denotes the internal calibration, converting from metric to pixel coordinates, we have further that


 $r_r^{t} K^{-t} E K^{-1} r_l = r_r^{t} F r_l = 0$

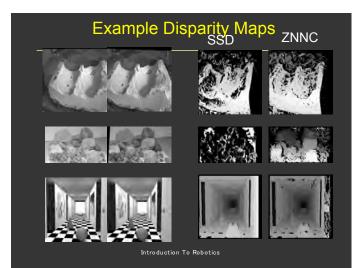

where r denotes the *pixel* coordinates of p. F is called the *fundamental matrix*


Introduction To Roboti

Correspondence Search Algorithm V2

```
best = -ones(size(im))
disp = zeros(size(im))
for k = mindisparity:maxdisparity
    prod = l<sub>1</sub>(:,overlap) .* l<sub>2</sub>(:,k+overlap)
    CC = conv2(prod,fspecial('average',winsize))
    better = CC > best;
    disp = better .* k + (1-better).*disp;
    best = better .*CC + (1-better).*best;
```

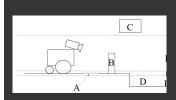
end


Typically saves O(winx*winy) operations for most any match metric

Introduction To Robotics

An Additional Twist

- Note that searching from left to right is not the same as searching from right to left.
- As a result, we can obtain a somewhat independent disparity map by flipping the images around.
- The results should be the same map up to sign.
- LRCheck: disp_{Ir}(i,j) = disp_{rl}(i,j+disp_{Ir}(i,j))


REAL-TIME STEREO SYSTEM	IMAGE SIZE	FRAME RATE	RANGE BINS	METHOD	PROCESSOR	CAMERAS
INRIA 1993	256x256	3.6 fps	32	Normalized Correlation	PeRLe-1	3
CMU iWarp 1993	256x240	15 fps	16	SSAD	64 Processor iWarp Computer	
Teleos 1995	320x240	0.5 fps	32	Sign Correlation	Pentium 166 MHz	2
JPL 1995	256x240	1.7 fps	32	SSD	Datacube & 68040	2
CMU Stereo Machine 1995	256x240	30 fps	30	SSAD	Custom HW & C40 DSP Array	
Point Grey Triclops	320x240	6 fps	32	SAD	Pentium II 450 MHz	3
SRI SVS 1997	320x240	12 fps	32	SAD	Pentium II 233 MHz	2
SRI SVM II 1997	320x240	30+ fps	32	SAD	TMS320C60x 200MHz DSP	2
Interval PARTS Engine 1997	320x240	42 fps	24	Census Matching	Custom FPGA	2
CSIRO 1997	256x256	30 fps	32	Census Matching	Custom FPGA	2
SAZAN 1999	320x240	20 fps	25	SSAD	FPGA & Convolvers	9
Point Grey Triclops 2001	320x240	20 fps 13 fps	32	SAD	Pentium IV 1.4 GHz	2
SRI SVS 2001	320x240	30 fps	32	SAD	Pentium III 700 MHZ	

Applications of Real-Time Stereo

- · Mobile robotics
 - Detect the structure of ground; detect obstacles; convoying
- Graphics/video
 - Detect foreground objects and matte in other objects (supermatrix effect)
- Surveillance
 - Detect and classify vehicles on a street or in a parking garage
- Medical
 - Measurement (e.g. sizing tumors)
 - Visualization (e.g. register with pre-operative CT)

Introduction To Robotics

Stereo Example: Obstacle Detection

Problem to solve: Distinguish between relevant obstacles (B,D) and irrelevant (A,C) obstacles

Introduction To Robotics

Obstacle Detection (cont'd)

Observation: Removing the ground plane immediately exposes obstacles

Introduction To Robotics

Applications of Real-Time Stereo

Other Problems:

- Photometric issues:
 - specularities
 - strongly non-Lambertian BRDF's
- · Surface structure
 - lack of texture
 - repeating texture within horopter bracket
- · Geometric ambiguities
 - as surfaces turn away, difficult to get accurate reconstruction (affine approximate can help)
 - at the occluding contour, likelihood of good match but incorrect reconstruction.otics

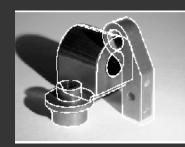
Local vs. Global Matching

Comparative results on images from the University of Tsukuba, provided by Scharstein and Szeliski [69]. Left to right: left stereo image, ground truth, Muhlmann et al.'s area correlation algorithm [57], dynamic programming (similar to Intille and Bobick [36]), Roy and Cox's maximum flow [65] and Komolgorov and Zabih's graph cuts [45].

Introduction To Robotics

Introduction To Robotics

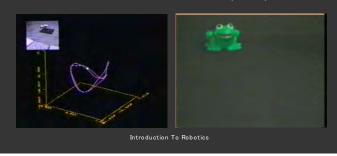
Object Recognition: The Problem


Given: A database D of "known" objects and an image I:

Determine which (if any) objects in D appear in I
 Determine the pose (rotation and translation) of the object

The object recognition conundrum

Recognition From Geometry?


Given a database of objects and an image determine what, if any of the objects are present in the image.

Introduction To Robotic

Recognition From Appearance?

- Columbia SLAM system:
 - can handle databases of 100's of objects
 - single change in point of view
 - uniform lighting conditions

Courtesy Shree Nayar, Columbia U.

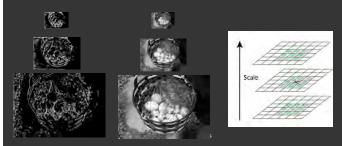
Current Best Solution

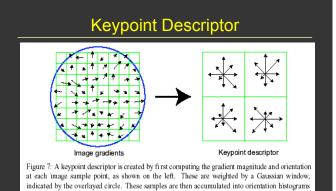
- · Generally view based
- Uses local features and "local" invariance (global is too weak)
- · Uses *lots* of features and some sort of voting
- Also recent attempts to perform "categorical" object recognition using similar techniques
- Example: recent papers by Schmid, Lowe, Ponce, Hebert, Perona ...
- Here, we discus SIFT features (Lowe 1999)

Introduction To Robotics

Feature Desiderata

- · Features should be distinctive
- Features should be easily detected under changes in pose, lighting, etc.
- · There should be many features per object

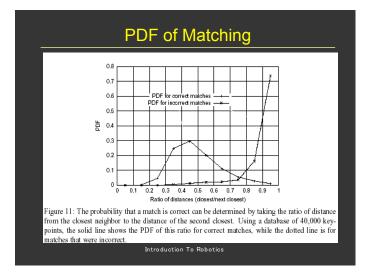



Steps in SIFT Feature Selection

- Scale-space peak selection
- Keypoint localization
 - includes rejection due to poor localization
 - also perform cornerness check using eigenvalues; reject those with eigenvalue ratio greater than 10
- Orientation Assignment
 - dominant orientation plus any within 80% of dominant
- Build keypoint descriptor

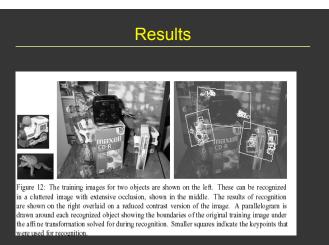
Peak Detection

- Find all max and min is LoG images in both space and scale
 - 8 spatial neighbors; 9 scale neighbors
 - orientation based on maximum of weighted histogram

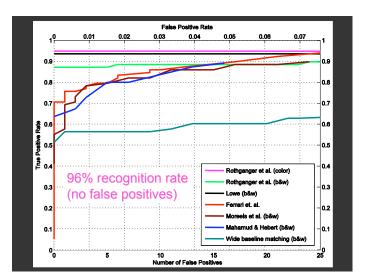

summarizing the contents over larger regions, as shown on the right, with the length of each arrow corresponding to the sum of the gradient magnitudes near that direction within the region. To reduce clutter, this figure shows a 2x2 descriptor array computed from an 8x8 set of samples, whereas most experiments in this paper use 4x4 descriptors computed from a 16x16 sample array.

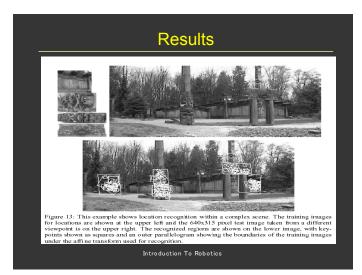
troduction To Robotics

Example

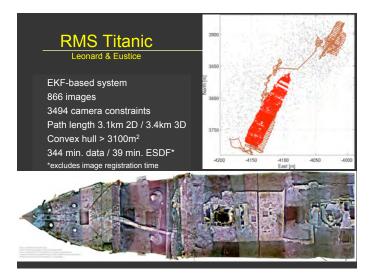

Figure 5: This ingles above we sugge of keypoint seconds. (6) The second pixet organism age, (b) The initial 832 keypoints locations at maxima and minima of the difference-of-Gaussian function. Keypoints are displayed as vectors indicating scale, orientation, and location. (c) Afte applying a threshold on minimum contrast, 729 keypoints remain. (d) The final 536 keypoints the remain following an additional threshold on ratio of principle curvatures.

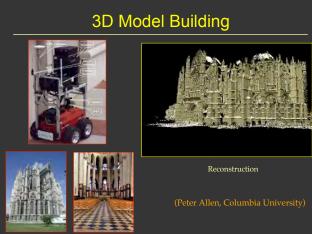
Feature Matching

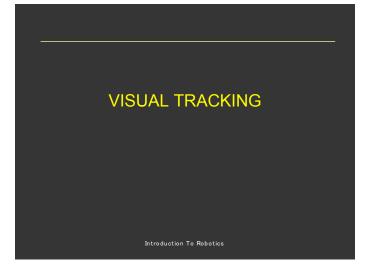

- Uses a Hough transform (voting technique)
 - parameters are position, orientation and scale for each training view
 - features are matched to closest Euclidean distance neighbor in database; each database feature indexed to object and view as well as location, orientation and scale
 - features are linked to adjacent model views; these links are also followed and accumulated
 - implemented using a hash table


Introduction To Robotics

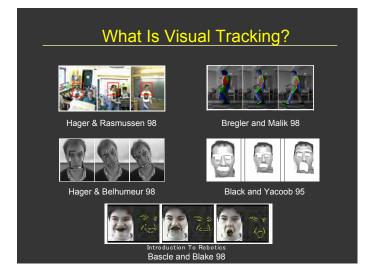
Introduction To Robotics

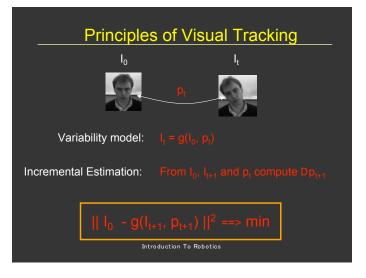

Vision-Based Robot Mapping

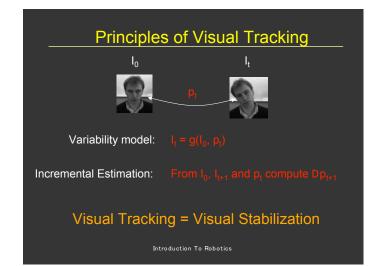

- FASTSlam innovations
 Rao-Blackwellized particle filters
- Mapping results for multiple kilometers
- Laser and vision – joint issue of IJCV and IJRR prominently vision-based SLAM

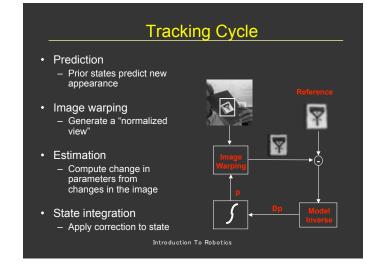


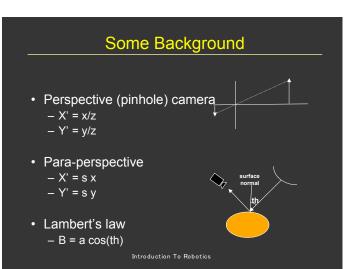
Se, Lowe, Little, 2003

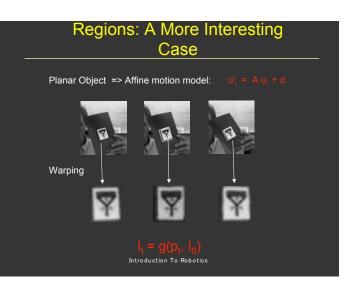

Introduction To Robotics

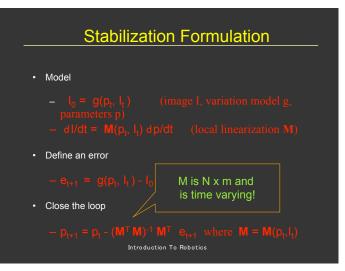


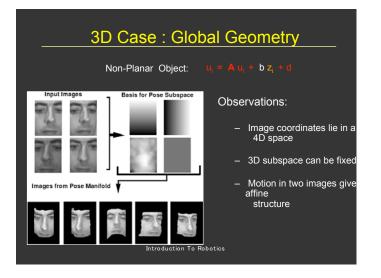


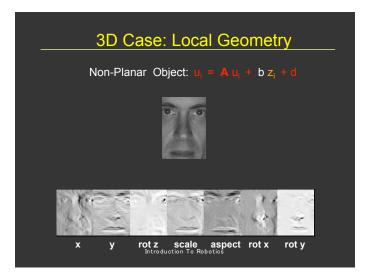


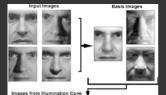

Cathedral of Saint Pierre





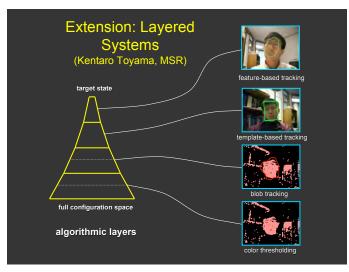




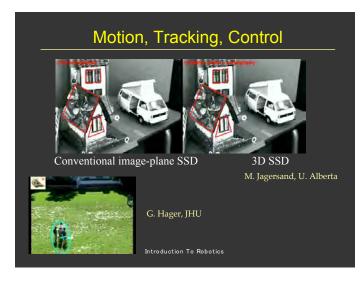


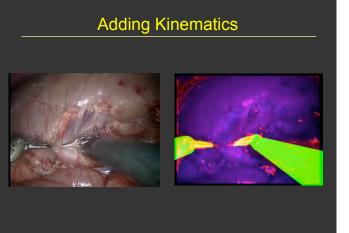
3D Case: Illumination Modeling

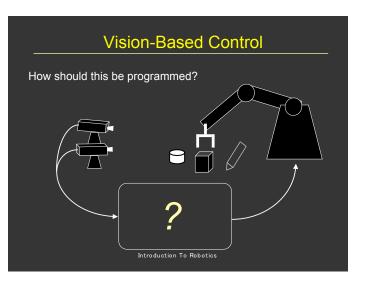
Non-Planar Object: $I_t = B a + I_0$

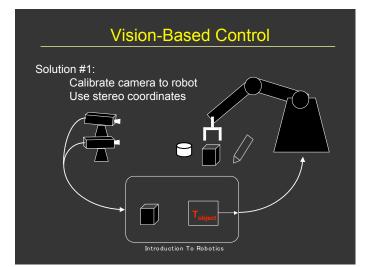


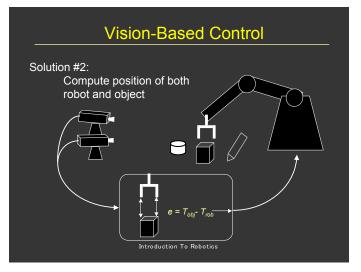
Observations:

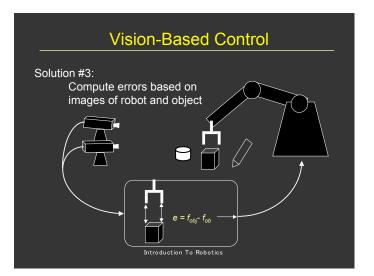

- Lambertian object, single source, no cast shadows => 3D image space
- With shadows => a cone
- Empirical evidence suggests 5 to 6 basis images suffices

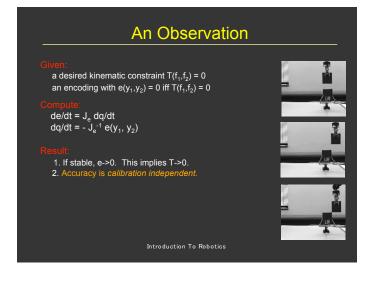

<section-header>

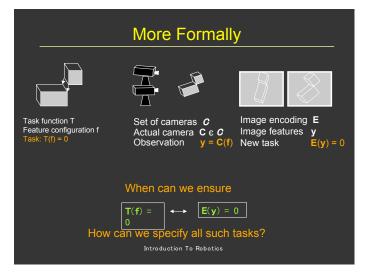












Example Camera Model Classes

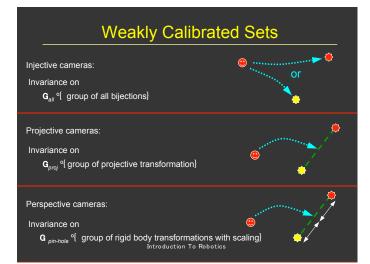
Fix a viewspace V

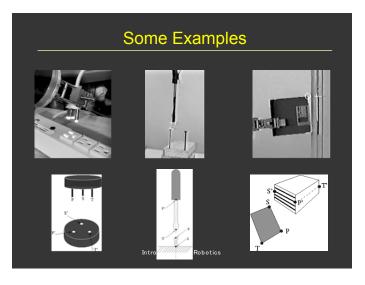
Given C_0 injective on **V**

 $\mathbf{C}_{all}[C_0] \circ \{ C : C \text{ injective on } \mathbf{V}, \text{ Im } C = \text{Im } C_0 \}$

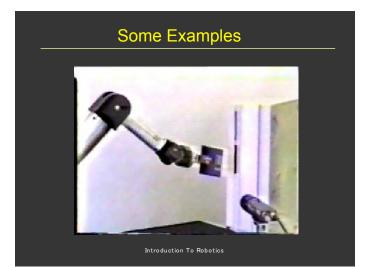
"weakly calibrated injective cameras"

Given projective 2-camera C_0 inj. on V


 $\mathbf{C}_{proj}[C_0] \circ \mathbf{C}_{all}[C_0] \doteq \{ \text{ set of all projective 2-camera models} \}$


"weakly calibrated projective cameras"

Given pin-hole 2-camera C_0 inj. on V


 $\mathbf{C}_{persp}[C_0] \circ \mathbf{C}_{all}[C_0] \doteq \{ \text{ set of all pin-hole 2-camera models} \}$

"weakly calibraties oper peterives cameras"

Challenge: Highly Dynamic Environments

Recovering Geometry, Egomotion, Individual/Group Trajectories, and Activities

Human Interaction

Motivators

- aging population
- enabling disabled
- huge market
- Challenges (research)
 - highly integrative
- unstructured problems
 adaptivity
- Challenges (market)

 high initial investment
 safety/reliability

Introduction To Robotics

Generalization and Learning

- Clear value to "data-driven" approaches
- Rapid progress in recent years in
 - dimensional reduction
 - unsupervised modeling
 - supervised methods
- Current methods still do not
 - scale well
 - make use of problem structure
 - cannot be validated

Introduction To Robotics

Cross-Cutting Challenges

- Large-scale verification of algorithms
 data repositories
 - accepted evaluation methodologies
- System integration
 almost no one has the resources to do it all and do it right
- · Facing the real world
- > 99% reliability
- manufacturable
- scalable

ntroduction To Robotics