IntroductionToRobotics-Lecture06

Instructor (Oussama Khatib):All right. Let’s get started. So today is a video segment is
video segment. Something happened. Okay. We have a little problem. I guess we can
start over. Okay. My computer just crashed. Okay. Let’s start over. Take two. So today
the video segment is about polypod. Have you heard about polypod? No. These are little
small robots that we connect to build a shape so that we call them configurable robots and
they are module and there is a lot of interest in this area. One of the pioneers in this area
was Markham. Markham was a PhD student in the robotics lab in the early 90s and he is
now a professor teaching robotics and building very advanced polypod systems. So I’'m
going to show you the concept that he proposed in 94 and some of the realizations that he
made at that time. Polypod. If we could have the light off, please? [Video]:

Polypod is a reconfigurable module robot. 1t’s made up of two types of modules called
segments and nods. Segments are two degree freedom modules with two motors, force
and position sensing and a microcomputer on board. Nods are [inaudible] shaped
housings for batteries. Segments may be mounted parallel to each other or they may be
mounted perpendicular to each other. Modules may also attach on any face of a nod.
Simple locomotion gaits are statically stable gaits that move along a straight line. The rest
of this video will quickly present a series of locomotion gaits through simulation and
implementation on polypod. Each segment runs semi-autonomously by controlling each
degree of freedom with the sequence of behaviors. All of the following motions use two
simple behavioral modes called ents mode and springs mode. With the springs mode, a
degree of freedom acts as a well damned spring using force sensors. With ents mode, the
degree of freedom moves at a constant speed until it reaches [inaudible] limit. Many of
the gaits from here are extendable to an arbitrary number of modules by adding to the
length of the robot. This next set of locomotion gaits combines simple modes to achieve
more complex or of commotion. In this case, segments are added perpendicularly
interspersed between the original segments. This gait may be used as a platform to carry
objects. Thermo modules used are larger and heavier the object may be. The next two
gaits will show the robot turning. In this gait, as the robot turns, the two feet of the robot
in contact with the ground rotate with respect to each other and so they must slide on the
ground. This would create problems if the robot were trying to navigate using dead
reckoning or if it were walking on carpet. Here segments are again interspersed
perpendicularly between segments. Since the segments are placed on the ground at one
end and picked up by the other, most fighting will occur. The following two gaits are
called exotic gaits. While not necessarily efficient or useful, they are still interesting. This
gate is called the moonwalk. Manipulation of large objects and locomotion can be
considered equivalent. Here, we are doing both. This last simulation is not a locomotion
mode, but it shows one possible dynamic reconfiguration of polypod.

Instructor (Oussama Khatib):Cool. Well, the early realization was really difficult and
very simple, but today, there are a lot of interesting devices that can carry all these
simulations and | hope we will have the chance to see them later. Okay. So today, we are
going to start on instantaneous kinematics and that is going to introduce the model |
discussed many times before. | refer to this kinematics model called the Jacobian Metrics.



That is going to be a very important part of all what we’re going to do later in term of not
only the motion, but also the dynamics of the motion. So you remember our first task was
to try to understand how we localize the endofactor, so we know now this frame of the
endofactor and we can describe the position and orientation of that endofactor will
respect to its frame. So if we start moving, we are going to have small displacement that
we can monitor in time and if we go to a small displacement from the current
configuration so we are at [inaudible], we have theta 1 to theta N and we know the
exposition, but if we make a small displacement of theta, so that would be a sort of delta
theta that we are introducing to each of those joint angles. We are going to have a small
displacement, delta X. It’s not only delta X in the position, but also in the orientation and
the question is what is this delta X given that we know delta theta and we know that theta
where we are. So this question, finding the relationship between delta theta and delta X is
answered by a linear relationship that connects the two. Delta theta and delta X are
connected by —

Student:

[Inaudible]

Instructor (Oussama Khatib):1 cannot hear you.
Student:Derivatives.

Instructor (Oussama Khatib):Yes, it is derivatives, but what is this model that is going
to connect the two? You guessed it now. So delta X is going to be related to delta theta by
a matrix.

Student: The Jacobian.

Instructor (Oussama Khatib):Yeah. The Jacobian. So delta X, delta theta or the
derivative, if we divide by [inaudible] theta delt and ace delt will be related to each other
through this Jacobian matrix. Now, X delta, again, involves two things. Remember our
earlier presentation of X involves the position and the orientation, so there is a part that
discusses the linear velocity and there is another part that represents the angular velocity
in this factor. So what we need to do is to find this relationship and establish this Jacobian
matrix that connects those displacements. So to study the Jacobian we’re going to start by
looking at differential motion and we’re going to discuss how do we compute a linear
velocity at a visual object, how angular velocity is computed as we propagate and how
we can compute the impact of angular velocity on the linear and angular velocity of the
endofactor. So this will take place through this propagation of velocities from one joint to
the next and that is going to provide us with a sort of recursive relation that will allow us
to find the velocities and the endofactor. We are going to examine another way of doing
this analysis rather than propagating velocities. We’re going to examine the structure of
the kinematics of a robot and its impact on the endofactor of velocities and that will lead
us to something really interesting that we call the explicitly form of the Jacobian matrix.
That is we are going to analysis the kinematics and we will see that in each of the



columns of this matrixes we are going to have an association with a specific joint. So if
we take the first column, this first column corresponds to the first joint and its impact on
the velocity of the endofactor velocity linear and angular. So this [inaudible] form is
going to be very important in establishing the model that connects the displacement or
velocities of the joint and of the endofactor, and this model is going to be very important,
also, in establishing the relationship between forces. Forces are acting on the joints.
Depending on the type of the joints, if we have a prismatic joint, we have a force; if we
have a volute joint, we will have a torque. Now, if we apply a set of torques to the arm,
there will be some resulting forces at the endofactor. It turned out that the relationship
between torques and forces resulting in the endofactor comes from exactly the same
model from the same Jacobian. There is a dual relationship between velocities and static
forces that we will use and this will lead us to establishing the relationship between
torques and forces. So first, we are going to analysis those displacements and what we
need is a description of [inaudible]. So we picked the joint angles as [inaudible], but
sometimes we have joint displacement if we have a prismatic joint. So we will use a
variable we call Q to represent, to capture, the joint angle whether it is prismatic or a
volute joint and this is done by introducing QI as theta | or DI, epsilon is equal to zero or
one. It’s a binary number so if we have another volute joint, epsilon is zero. If we have a
prismatic joint, it’s one and epsilon bar is the compliment. So the QI is going to be either
theta | or DI following the type of the joint. So with the joint Jacobian vector Q1, Q2, Q3.
Now we can go to the representation and find the relationship between the two that is
between X and Q and then compute those differentiations. So we can differentiate as you
suggested to compute this relationship and this differentiation is going to involve multi
variables so X, Y, Z, whatever representation we have, maybe alpha, delta, gamma and
then Q, Q1, Q2, Q3. So this is sort of a vector differentiation. We have X1 that
corresponds to the first function. F1, this could be just the coordinate X. X2 is Y, etcetera
and we have all these functions. So the Jacobian could be computed simply by this
differentiation, partial differentiation. We can compute delta X1 as the partial derivative
of F with respect to Q1 and F1 is function of all the Qs so we would take the partial
derivative with respect to all the Qs and that provides delta X1. Delta XM in the same
way, we take the less variable, less function, differentiate and obtain the relationship.
Now, here we have a set of equations. How many equations do we have? Can you count
them?

Student:M.

Instructor (Oussama Khatib):M. So we have M equations. Depending on how many
variables? Number of joints, how many joints do we have? N. So it is, basically, M
equations that is expressed in function of all these N variables. So do you have another
way to write this equation so it’s a little bit more compact because 1’m not going to write
this every time. So we can put it in a matrix form where delta X [inaudible] is a vector,
delta X and delta Q1 to QN is a vector, delta Q and the relationship between the two is
this matrix. So do you see the first column of this matrix? How do we transform a set of
equations into a matrix vector form? So how do we do that? Do you see, first of all, what
would be the first column? Come on. What is the first column? Where is it?



Student:[Inaudible] with respect to QN.

Instructor (Oussama Khatib):So all the co-efficients of QN, so the first column is
partial derivative of F1 with respect to QN to partial derivative of FM with respect to QN.
So basically, this is the matrix. And this is precisely your Jacobian matrix, which is a
matrix with M by N and its connecting the delta QN to your delta X. So here is the
Jacobian, but doing this computation is not simple. You’ll have different kinds of
representations. There are different ways of expressing your position and orientation and
if you go and analyze this Jacobian, you are going to find yourself analyzing both the
kinematics, the representation that you use and it’s very difficult to make sense of what is
happening. Let’s take an example. Oh, yeah, by the way, this writing that I’m writing
here is a connection between delta Q and delta X it is exactly the same matrix that
connects Q dot to X dot because we are doing this differentiation if you take it with
respect to the time then Q dot is connected to X dot through the same matrix. So the
element of this Jacobian is the partial derivative of the function I with respect to J and
here is the example. It’s a really simple example. Two degrees of freedom with
[inaudible] length, L1 and L2, and our representation is going to be just X and Y so what
is X in this case? Okay. Let’s do the [inaudible] parameters and do the frame assignment
and the propagation or maybe you can just give me X directly by looking at the figure
and this is finished. Oh, good. Good to know. Theta one and theta two. So X will be on
this direction so it will be the co-sines so it will be L1 — come on — co-sine theta one plus
L2 — co-sines —

Student:[Inaudible]
Instructor (Oussama Khatib):Theta one plus theta two.
Student:Yeah. Yes.

Instructor (Oussama Khatib):Right. Because the signs will give you the Y. So here is
Al co-sine one plus L2 co-sine one plus two and Y. So in this case, to differentiate it’s
very simple. The differentiation gives you this and now you have your matrix and you
can see that the first row is minus Y, the second row is just X. So the Jacobian in this case
is quite simple and this Jacobian gives you this relation for small displacement. For delta
theta, you can compute the corresponding delta X and for velocities in joint space, you
have velocities as the endofactor. Actually, this matrix has been widely used to control
the robot because you can say I’m here, 1 would like to move the endofactor with little
displacement. You can take that displacement and generate a trajectory and compute
small displacement delta thetas so you want to find the delta theta by displacing the
endofactor by a little bit. What is the derivative of co-sine two?

Student:[Inaudible]

Instructor (Oussama Khatib):So it will be co-sine one, co-sine two, D3 and the second
component?



Student:Sign one.

Instructor (Oussama Khatib):Co-sine one, co-sine two, D3 and the last one minus sign
two, D3. So that’s correct? Okay. So what about the third column we derive with respect
to D3 or Q3? This would be -

Student:[Inaudible]

Instructor (Oussama Khatib):Co-sine. Excellent. And with respect to Q4? Does X, Y
or Z depend on Q4, no, so it should be zero, zero, zero. Okay. Well, here is the part of the
Jacobian related to X dot, Y dot and Z dot. That was easy. Yes?

Student:What are the joint coordinates for Q4 through Q6?

Instructor (Oussama Khatib):Well, they are not — | mean, X, Y and Z is independent.
You remember because X, Y and Z was chosen at the risk point so when we move the
endofactor, the point is still six. So you got zero columns for four, five and six. Okay. All
right. Well, what seems very simple for X, Y and Z becomes a little bit more challenging
for the orientation. So let’s take R1, R2, R3. You remember R1, R2, R3 are these three
vectors representing the direction co-sines and if we write the derivative, it’s going to be
R dot, R dot two, R dot three will be related to the Q dots by the partial derivative of R
with respect to Q one. So let’s do that. Okay. Five minutes. Well, I doubt it. You might
be able to write a program to do it in five minutes, and still, it will be quite complicated
to find all these columns, but more than that, what we have here is we have a matrix that
corresponds to this description, which means that we are computing a Jacobian for the
position and the orientation represented with direction co-sines and this matrix will have
dimensions. We found the first one three by six and the second one, nine by six so it will
be a 12 by six matrix. So if you look at the rank of that matrix, it’s not square matrix. Its
rank is at most six, but you cannot really analyze this matrix and make sense of what is
happening. You will remember there might be configurations that will bring singularities
if we are using a lot of angles or some minimal representation and that is going to be
reflected in the Jacobian so our Jacobian is really not giving us the properties of the
mechanism in terms of the linear velocity and angular velocity, rather, it is mixing
everything up; mixing the representation properties with the properties of the mechanism
itself. So when we have an XP and XR, we have contingencies for [inaudible], for the
orientation, we might have a lot of angles, fixed angles, direction co-sines, a lot of
parameters and if we compute the Jacobian this way. That is, if we compute the Jacobian
for the position from differentiation and from the orientation, this resulting Jacobian is
going to be depending on the representation and it will have dimensions that
accommaodate the representation. So this is not something you want to do. If you are
trying to find the Jacobian of your robot, you want to find the properties associated with
robot in terms of its linear velocities and angular velocities. So this is really what we’re
after. We are trying to find how the endofactor moves when we put velocities at the joints
when we make small displacement of the joint. What is the linear velocity? What is the
angular velocity? So the linear velocity and angular velocity will be related to Q dot, and
there is a matrix that provides that relationship. It is the Jacobian matrix that connects this



six by one vector. Linear velocity is VX, VY, VZ; angular velocity is Omega X, Omega
Y, Omega Z and Q dot has the number of degrees of freedom and this Jacobian will be
sort of like that basic Jacobian that is describing the kinematics independently of your
representation. What is interesting is this Jacobian; JO will play a very important role in
the kinematics, but also in describing the velocities for your representation. Any
representation that you will have can be connected to this Jacobian because any
representation of velocities can be connected to linear and angular velocities. These
angular velocities are instantaneous so there are representations of orientation. If we take
three angular, alpha, beta, gamma — if you take the derivative of those angles, alpha, dot,
beta, dot, gamma, dot, they are related to Omega. They are not equal to Omega. The
derivative of [inaudible] angles are not angular velocities, but they are related to the
angular velocities by other presentation, by a very simple model, a three by three matrix
and using those relationships, we will be able to describe the Jacobian for any
representation and connected to this Jacobian. So if we have spherical coordinates, the
derivative of the spherical coordinates are connected to the linear velocity by a simple
matrix that is only function of the representation of spherical coordinates. If we have a lot
of angles, we connect them to do omega simply by a three by three matrix that only
involves alpha, beta and gamma. So through this relation we can see that we connect
except for the position and the orientation to V omega and because your omega is
connected to a Q dot, then we have a relationship between the Jacobian associated with
this representation and the Jacobian associated with the kinematics. So here are some
examples. If we take a lot of angles, so if we take alpha, beta, gamma and take the
derivative, we can see that these derivatives of alpha, beta, gamma are related by omega
by a matrix which is, in this case, the sign of alpha, co-sine of beta, so it is only function
of a lot of angles. If we take [inaudible] coordinates, the matrix that connect [inaudible]
coordinates to linear velocity is simply the identity matrix because the derivative of
[inaudible] are the linear velocities. So using this type of computing the linear and
angular velocities, we will be able to generalize and find the Jacobian associated with any
representation. So the Jacobian for other presentation X, X is XP and XR will be a
Jacobian we call JX for that specific X, and this Jacobian will be related to the basic
Jacobian by a matrix E where E is going to connect the descriptions of linear and angular
representation to V and omega through this relation. So here’s an example. If we take X
dot as related to V through this matrix and X dot R related to omega through this matrix
because Z and omega are related to Q dot by JV and J omega then we will have this
relation which leads to this relation that is the part associated with the position
representation is simply the Jacobian V associated with linear velocity previously
supplied by EP. That is the wishes function only as the representation or ER for the
rotations which means if we combine them together, we obtain this relation, that is the
Jacobian associated with other presentation is related to the basic Jacobian by an E matrix
that has a diagonal form where EP is the matrix associated with the linear motion and ER
is the matrix associated with E representation of the rotations. So the focus is on J zero.
We have to find J zero. Linear and instantaneous angular velocities. But first let’s
examine some Es. For the position representation, X, Y and Z, we said is the identity
matrix. How about cylindrical coordinates? Cylindrical coordinates you get roll theta and
Z and here is the relationship between X, Y and Z and those coordinates. All what you
need to do is to relate the differential relationship between delta X, delta Y and delta Z



and those coordinates and you’ll find the matrix. And that leads to this matrix for
cylindrical coordinates. What is nice is yeah, you go and store this in your library and you
have access to all this. You don’t have to recompute them. So for cylindrical coordinates
you have this matrix. For spherical coordinates you have this matrix, so these are things
that if you want to change your representation, you just change your EP. I’m almost sure
that all of you understand what is the vector of linear velocity, but probably there is some
confusion when we start propagating and moving and putting multiple variables and
multiple frames, so I’m going to go a little bit back and describe how we can compute
linear velocities as we propagate our vectors and we go from one link to the next. So
here’s a point and this point is moving with respect to something. If it is moving with
respect to the origin of frame A we talk about the velocity P of that point with respect to
A, A, being the frame. Now, you have to distinguish between this magnitude of the
velocity and its direction as a vector and its components and where we are expressing this
vector. So this vector could be expressed in frame A, right, we can have its component in
frame A, but also we can express it in frame B and we can have its component in frame
B. But still this vector is the vector representing the velocity of point P moving with
respect to frame A. Now, if you want, we can put it in C. So don’t be confused about the
vector and where we are expressing this vector. And that’s why I’m putting P/A,
specifically, to show that measuring the magnitude of the velocity, the vector of velocity
with respect to frame A. Now, let’s have the following situation. | have this point that is
moving with respect to frame A so | have a vector representing the velocity of point P
with respect to frame A, this vector; now, if frame A is moving with respect to another
frame and this is the frame of length three moving with respect to length two or whatever,
there is a velocity of the origin and as this velocity is the velocity of the origin
representing the velocity with respect to frame B. The question is what is the velocity of
P with respect to frame B? What would be that velocity?

Student:[Inaudible]

Instructor (Oussama Khatib):Obviously, it’s going to be the sum of the velocity with
respect to frame A and the velocity of the origin with respect to frame B, so you just add
these two vectors and that is the velocity of the point P with respect to frame B. So here
we discussed the motion of the frame and this motion is uniquely produced by a
translation with a velocity VA of the origin of that frame with respect to B. Now, it
becomes a little more complicated when you have a rotation, so suppose you are
translating and at the same time, you are rotating. So we need to introduce the F factor of
rotation and when we rotate a frame, different points will move at different velocities,
right? So if you’re rotating an object, depending on the axis of rotation, this point is
moving faster than this point if I’m rotating above this axis. Actually, on this object, there
will be a point that will have zero velocity. Do you know which points will have zero
velocity? The points that lies on the axis of rotation. So if we take an apple and we rotate
it above this axis, there will be some points that will not be rotating, but actually, the
points on the outside will be rotating more, and what you are concerned with is if | have a
vector or instantaneous velocity, what are the linear velocities at different points located
by a vector P, and that is the question we need to answer first. Do you know the answer?
Not yet? Three, four, minutes, you will know the answer. Okay. So we have an axis of



rotation, we have all these fixed points, so we’re just doing a pure rotation, so these
points are fixed. Let’s have a schematic simpler to C, so obviously the points closer to the
axis are going to move at slower velocities. Let’s pick a point P and with concern with
the velocity at this point. The angular velocity measured above this axis is omega and
omega itself is representing the vector so it’s vector and magnitude. Now, what is the
magnitude of VP and its value given that we know its location P and we know omega?
Well, first of all, we need to locate P with respect to some frame and we need to make
sure that this frame is not moving so we put a frame on the axis so the origin of the frame
is fixed with respect to this rotation, and we located with our vector P. Okay. Now we
have everything we need to find VVP. So let’s see. The magnitude of VP is going to
increase with the magnitude of omega. That makes sense. You’re going to increase with
the distance from the center, which is the vector P multiple by the sign of the angle. The
further away from the center, the largest the VP is going to be, and we can notice also
that VP is [inaudible] to both omega, the axis of rotations so the velocity is [inaudible] to
that and also [inaudible]to the vector locating that point because we are taking the point
from the fixed point. So that means with all of this, that means what? VP is equal to —
when you have three vectors that are [inaudible] and you have the sign, then you will
have cross —

Student:Product.

Instructor (Oussama Khatib):Which one is first? So VP is equal to cross product of
what by what? | said you will know in four minutes and it is almost four minutes so here
is the answer. What is the answer? It’s omega cross P, it’s not P cross omega. By the
way, we will see P cross F to produce the torque. There is a dual relation so here we have
velocity, you have omega, you have the point. Now, you can imagine on the same figure
that instead of omega and applying a torque and the result will be a force and there is a
similar relationship between the two. And in that case, the relationship will be involving
the distance first times the force and to produce the torque. Okay. We will see that later.
Probably on Monday. So now we have this relation, linear velocity is the angular velocity
across the distance. It is represented as a vector model here. What we need to do in order
to go to the matrixes, we need to introduce a matrix representation. That is, instead of
writing a vector representation, | need to write this in a matrix form. So V is a vector now
and C is a vector and A is the vector transformed into this matrix, a parameter, that does
for you the A cross B. So we need to find this A [inaudible], the operator that is
equivalent to A cross. Are you familiar with this? The cross product operator? So this is
essentially an askew matrix whose diagonals are zero, which is formed directly from the
vector AX minus Y, Z component and it is not symmetric metrics and you start with a
vector A. If you take this vector and put it in this matrix, then you get the matrix that will
operate on the vector to produce the cross product of that vector and that will be your
resulting linear velocity in the case of omega cross P. So now that we are going to
combine linear and angular motion, the new velocity there in that frame is going to
involve this omega cross P and this will be added to that vector. That is, you have the
velocity of the point coming from the linear motion, the velocity of the origin and the
velocity due to this rotation. And this is omega cross the vector locating the point. Now
be careful about where you express your vectors because if we say we are going to



compute those quantities to express them in frame A, the result has to be expressed of
each term should be expressed in frame A. So if we have the vector P expressed in frame
B, we will have to transform it to frame A and then do the multiplication and we have to
express this in frame A so that the whole result is finally in frame A. So you have to
make sure that each term or each vector is expressed in the same frame. It doesn’t matter
which frame it is, but it has to be in the same frame, and if you need A, then everything
has to be transformed to A. Wow. That was interesting. Good. All right. We’re ready
now. So we’re going to take those concepts and now apply them to all our mechanisms.
And | think we’re going to skip the movie segment. We will see it on Monday. So the
way we’re going to proceed is by taking those velocities from one frame and taking those
velocities and propagating them as we move from one link to the other until reaching the
velocity at VV and omega. So this propagation is going to involve two velocities. The
linear velocity, V, and the angular velocity, omega. All right. And when we get there, we
will have the Jacobian that will be in the total velocity. That is, once you V and omega,
you will have implicitly the expression of the Jacobian multiplied by theta which you can
extract. So let’s start with the linear velocity. So here’s let’s take a vector, VI and omega
I that is describing the velocities of this origin of frame I and the rotation of the frame
with respect to omega I, that is representing the instantaneous velocity. And let’s go to
the next frame where we have a new linear velocity, | plus one and the new instantaneous
angular velocity, omega I plus one. So what is the resulting linear velocity VI plus one as
related to the velocity VI? So first of all, don’t look at your notes and let’s see if you have
the intuition about it. So what would be V1 plus one as a function of VI1? Is it smaller,
larger? So VI plus one is going to be equal to — Is it related to VI by any chance? So there
is a translation. Everything is moving with V1. So the VI plus one is going to have VI in
there without doubt, but there are two terms that will appear and the first one is omega |
cross Pl plus one. You didn’t tell me why, but maybe now that I’m showing you what is
the [inaudible], tell me why? Yes.

Student:Well, the movement in this frame is going to add to the linear velocity in that
one.

Instructor (Oussama Khatib):So the linear velocity is computed at the origin of that
frame, right? So the omega involved will not be that omega I plus one, the large omega |
plus one. This instantaneous rotation here — if this is I, the volute joint, this will be
rotating. So this rotation will not change the velocity here. What will change the velocity
here is the rotation, omega | of this point located by this vector, so this would be omega I,
which is here, cross this vector locating this point. So this is the first term. Now, can
anyone explain the second term? Yes?

Student:[Inaudible] prismatic joints.

Instructor (Oussama Khatib):So the second term only appears if the joint, the Z axis,
was not a volute joint, but was a prismatic joint that is translating along the Z axis so
along ZI plus one and the magnitude will be the D dot I plus one. D is a variable in this
case for the prismatic joint. So this is the D dot | plus one, ZI is the local velocity in



frame | plus one of that point and the omega | cross PI is the contribution of the rotation
of the frame and plus all the translation that was happening before? You had a question?

Student:Yeah. It looks like the prismatic is on the ZI in that frame?

Instructor (Oussama Khatib):Yeah, it is always on the ZI plus one. So this will appear
only if this was not volute, it was prismatic and it is translating along the ZI plus one.

Student:Oh, I just assumed because | saw the two headed arrow under ZI.
Instructor (Oussama Khatib):That’s representing D delt here.
Student:Okay.

Instructor (Oussama Khatib):Okay. Now, what about angular velocities? We are
concerned with what is omega | plus one as a function of omega I. So if the joint, I plus
one, was prismatic, so there is no rotation between the two, what would be omega I plus
one? It would identical to omega I. If it is a volute, then there will be the omega | plus
one that will be added, and the omega I plus is simply the dot of theta I plus one along ZI
plus one. So to propagate from one frame to the next what we need to do is to take these
two relations and go from the fixed base where ZO is zero, it’s attached to the ground and
omega zero is zero, there is no motion, and propagate to the end and when we reach theta
end, we are going to have the V associated with the endofactor, the omega associated
with the endofactor. Now, in both relations what do you see? You see that you are using
D dot and theta dot and the kinematics, obviously, the Z axis so that means we are going
to be able to compute the total velocities VV and omega at the endofactor as a function of
the theta dots and the D dots or the Q dots. Yes?

Student:Are these two frames rotating independently, like, is there a volute joint on I and
is there a volute joint in I plus one?

Instructor (Oussama Khatib):There could be a volute joint in frame | plus one, or a
prismatic joint. And depending on the nature of the joint, you get either D dot or you get
the omega I. Okay. So when you do this computation, you are going to have an
expression of the total linear velocities, total angular velocities as a function of the D dots
or the theta dots. So for joint one, V1 and omega one can be expressed in frame one and
this is going to be sort of using this relation to compute the omega I plus one from the
initial frame. This would be the expression for | plus one and this would take us, because
we are expressing all these in the frame, | plus one, we are going to find the total
expression of the velocities in the frame N as we propagate, and once you reach the final
velocities in frame N, you can transform them back to the base frame and that will give
you the total velocities at the endofactor in frame zero. Yes?

Student:In your previous slide, where did you get theta | plus one from?

Instructor (Oussama Khatib):Theta?



Student:The previous slide.
Instructor (Oussama Khatib):Yes. Which variable?

Student:Omega | plus one equals the theta I plus one, where did you get that theta | plus
one from?

Instructor (Oussama Khatib): This one?
Student:Yes.

Instructor (Oussama Khatib):Okay. So omega | plus one is the angular velocity
associated with the motion of joint I plus one if the joint is volute, and if the joint is
volute, the velocity vector is about the vector ZI plus one so this is a unit vector and the
magnitude of that velocity is proportional to theta dot I plus one. So this is actually joint |
plus one. If you take the derivative, you remember we aligned the rotations of each volute
joint along the Z axis so that is where it comes from. Yes?

Student:Is theta I plus one and DI plus one, aren’t those defined along the ZI plus one
axis?

Instructor (Oussama Khatib):Always.

Student:So it’s not necessary of the dot product, right?

Instructor (Oussama Khatib):What do you mean it’s not dot product?
Student:Dot ZI plus one, that’s not adding anything is it if there’s [inaudible]

Instructor (Oussama Khatib):At this point, this dot, no, it’s not dot product. It’s
proportional. No, theta dot is a scalar and the ZI is a vector, so no, this is not a dot
product. This is just a scalar multiplication. All right. Other questions? Yes.

Student:Why isn’t it expressed in terms of the coordinates for | plus one if when we do
the forward kinematics you’re gonna get the inverse?

Instructor (Oussama Khatib):Okay. So the algorithm that we are using here for the
propagation is taking the velocities and propagating to the end so we compute that in
frame N and at the end if we need them in frame zero we do the transformation back to
frame zero. This is the way this algorithm is done. You can do the computation backward
and you compute everything in frame zero or actually the most efficient place to do this
computation is you know where? Not out frame zero or out frame N. It is in the middle
because those transformations become more and more complicated if you go from the
base to the end. In the middle, the transformations are simpler so if you transform just to
the middle, as you propagate you will get the most efficient form, but in this algorithm
we are showing that if we use R1, I plus one, we will end up with velocities omega N and



VN that will give us the total linear and angular velocity in frame N and if we need them
in frame N that is fine, otherwise, we transform them here. Now, where is the Jacobian in
all of this? Anyone can see the Jacobian? I showed you this recursive propagation. We
called it a propagation computing the velocities, but where is the Jacobian? No? You
cannot see it? Well, it is there, you have to find it. You have to go inside so you write out
the relationships, you do the propagation. What do you need to extract from those
expressions to find the Jacobian? You need to get the theta dot | plus one and the V dot |
plus one out and everything else is going to give you these columns of the Jacobian, so
you cannot really see it, but it is there. Now, velocity propagation is very nice
numerically, but it doesn’t give you any idea about the structure, about the contribution of
the joint, about your kinematics and it is not really the best way to analyze your
mechanism. What we’re going to do is we’re going to in fact analyze and work with this
explicit form of the Jacobian that would allow us to really look at the mechanism and see,
immediately, the Jacobian matrix and its columns and its structure. So next time when we
analyze the explicit Jacobian you will be able, immediately, to look at the mechanisms so
now you see the Stanford [inaudible], you look at Stanford [inaudible] and you see this is
the first column, this is the second column, this is the third column, this is how the
Jacobian is going to be. Before we leave, we still have a few more minutes, there is an
example — this example is useful if you want really to understand literally the velocity
propagation and this example is done over a very simple three degree of freedom
mechanism. We know the answer of the Jacobian, you know the Jacobian for this is you
write theta one, theta two — you can write X, Y and Z which is [inaudible] co-sine theta
one plus L2 co-sine, one and two and L3 co-sine, one, two, three and sign and you do the
differentiation and you find your Jacobian. At the same time, if you do it through velocity
propagation using these relations, you go to the first propagation, the base is at zero, you
compute the linear velocity at P2, you compute it, you get this expression, you compute
the velocity of two. So just a take look at this example. Once you completed the
propagation you’ll find that your omega vector is the sum of these velocities, which
means, essentially, your total omega is coming from these three rotations; one, two and
three contributes to the total rotations of your endofactor. The meaning of velocities are
going to be — this would be the Jacobian so if extract theta dot one, theta dot two out, this
is your Jacobian for the position and this is your omega so this is the Jacobian for the
omega. Now, this whole computation turned out to be — well, through this miracle
propagation, but if you do it through the analysis, what you’re going to find is for zero
omega you see here what we have, zero, zero, one, zero, zero, one, zero, zero, one; what
is this zero, zero, one? This is the Z vector. All the omegas are rotating above the Z
vector, which means, essentially, the Jacobian associated with angular motion is simply
the ZI vectors associated with the joint angles. What is this? Well, I mean, this could be
directly computed from the partial derivatives or it could be computed from this cross
product of those joint angle rotations with the point locating that point. So we will see
that structure next time and then you can see much better the properties of the Jacobian as
it relates to the kinematics of the robot. | will see you on Monday.

[End of Audio]

Duration: 70 minutes



