
IntroductionToRobotics-Lecture13  

Instructor (Oussama Khatib):Okay. Let’s get started. So today’s video is about 
dampening. This is from Vancouver Tech and it was presented as ISRR, International 
Symposium of Robotic Research in ’93.  

[Video playing]  

At the University of Michigan Robotics Laboratory, we’re interested in tasks involving 
dynamically dexterous interaction between robots and their environments. Computers 
currently play chess better that all but a few of the best human experts. But no machine 
has yet been built that can manipulate the physical pieces with anywhere near the skill 
and reliability of the youngest human chess novice. Our three degree of freedom direct 
drive robot is endowed with a juggling algorithm that transforms the positions and 
velocities of a falling ball into desired joint positions and velocities, which the robot is 
forced to track by use of a nonlinear inverse dynamics controller. Smooth position and 
velocity estimates are produced by a linear observer, which in turn, receives input from a 
real-time stereo vision system. The one juggle tasks requires the machine to bat a single 
ball into a stable periodic trajectory, passing through a user-specified apex. Adding a 
second ball with an independently specified apex point defines a two-juggle task. The 
juggling algorithm shown here employs an urgency measure to switch the machine’s 
interest between the reference command corresponding to the two independent one 
juggles. It’s worth emphasizing that there is no planning in the conventional sense taking 
place in this system. Rather, the robot’s impact decisions are induced by its continuous 
motions in the effort to track a carefully distorted version of the positions and velocities 
of the two balls. Machine juggling skills, in and of themselves, seem unlikely to play a 
direct role in the social and economic impact of advanced robotics. However, we are 
convinced that the problems of controlling contexts, focusing visual attention, and 
coordinating in real time the constituent behaviors of such skills provides an invaluable 
laboratory for understanding what is hard about dynamical dexterity. Without a phase 
regulation control term, the balls quickly wander in phase and eventually fall in 
simultaneously. In contrast, with phrase regulation again enabled, nearly simultaneous 
falling balls are successfully separated. In this experiment, we failed to prevent a spatial 
collision. We hope in the future to better understand the nature of these and other 
dynamical obstacles, or order to control around them more effectively. Of course, there 
will always be situations from which the machine cannot recover.  

Instructor (Oussama Khatib):Okay. So who’s interested in juggling? Well, those who 
are interested in juggling could try it next quarter in Experimental Robotics. In fact, a lot 
of the projects in Experimental Robotics involve dynamic skills, throwing a ball into a 
basket, playing ping-pong, or whatever. So juggling is quite challenging, actually. Well, 
juggling requires control and here we are. So this is a little bit of a concept that we are 
going to see over the discussions on control. And the concept is instead of really thinking 
about the robot as a programmable machine where you need to find all the join motions 
corresponding to your task. So you want to move to some location and you want to be 
able to reach that location with some orientation of your vector. Well, basically, what you 



have to do is you have to solve this inverse kinematic problem to find the joint angles that 
would allow you to be in that configuration. I’m not sure if a human can do that. Humans 
usually are really poor at computation, so finding the inverse kinematics, finding all the 
joint angles that will put you in that final configuration is really difficult. So what do you 
think humans do?  

Student:[Inaudible].  

Instructor (Oussama Khatib):Feedback of what?  

Student:[Inaudible].  

Instructor (Oussama Khatib):So you sort of like think – try to reach for something. Try 
to reach for the chair in front of you. How do you do it? So you’re looking at your hand 
and you look at the chair and you have this visual feedback. So it’s sort of like your hand 
is attracted by a force pulling you toward that goal position you describe. And this is the 
concept you see here. It’s sort of like potential energy, where the minimum of this 
potential energy is located at the goal position. And that is going to create a force pulling 
your hand toward the goal. Your hand is going to just move toward this goal without a 
priori imaging or knowing where your final configuration is going to be. The final 
configuration is going to emerge from your motion. We will come to this later. But this 
kind of idea is really what we call task oriented or operation space control. The idea of 
really doing the control, not through this inverse kinematic and programming the robot. 
Well, there is another method, and most robots today are controlled through inverse 
kinematic, that is, we control the joint motions. So you first decide where you’re going to 
position your hand. So you need to find this configuration, which means all that you 
know is the position and orientation of the hand. You don’t know yet this. So you need to 
do the inverse kinematic. You solve the inverse kinematic for six degrees of freedom. 
How about inverse kinematic for this? I’m not sure. But anyway, you might maybe use a 
mannequin and you just position it and you decide, well, this is a good configuration. 
And you start from here, and now you survey your joint angles to move to that final 
configuration. Well, it doesn’t really work very well with humanoid robotics, and in fact, 
a lot of humanoid robotics today are suffering from this problem, the fact that we are still 
controlling robots using inverse kinematics. However, for [inaudible] robots, with few 
number of degrees of freedom or if you have a repeatable task, you’re repeating the same 
motion over and over, basically, you’ve recorded the motion and what is left is how to 
track that motion. So today, we’re going to discuss the basics of control. And we’re going 
to really start slowly with just something like we saw on the video, just natural systems, 
like you’re dropping a ball or you are looking at a pendulum moving. And you are trying 
to understand just the relationship between the potential energy applied to the system and 
the kinetic energy resulting from its motion. And then we will analyze how this behavior 
would allow us to create something like PD control, proportional derivative control. 
Well, in nature we don’t have too much of I, integral action, but we will be able, also, to 
be able to add integral action if the error is large. And then we will apply this to 
controlling robots in joint space, so we can control this robot to follow a trajectory that is 
given in joint space. And then we will discuss how we can apply control techniques 



directly to the task in the way we do it human, that is, by directly applying a force, not 
through the inverse kinematic or the joints, but directly to controlling the end effector 
motion, velocity and acceleration. So at the end, we will see that motion control is not 
really the only thing we need to do when we have a robot. You really need to interact 
with the environment. And in order to interact with the environment, you need to control 
the contact forces. So if you are sliding over a surface, you are moving, and at the same 
time, you are applying a force of contact. And that is going to be a critical technique in 
order to interact with the world, affect objects, assemble, move, and cooperate with 
different robots. So a manipulator like this one can be controlled directly through its joint 
motion by simply imaging that you have some sort of springs at the joints, and if you put 
just springs, then this mechanism is going to oscillate if you disturb it. So what do we 
need to add? I’m just talking about passive mechanism. So we put the spring, and now 
it’s going to hold itself at some configuration. And if you disturb it, it will oscillate. So 
what do we do to make it more like stable?  

Student:Put some damper?  

Instructor (Oussama Khatib):Put some damper. So if you place a spring and a damper 
at each of the joints, you will basically go to that resting point of all the springs and that 
will allow you to be at that configuration. Right? So to control the robot in joint space, 
just imagine that the resting point of the spring is changing. So little by little, you’re here, 
then you’re moving it there and there and there. And then you can control the joint 
motions. So this is typically the approach that we will have in joint space control, except 
the fact that we are not really dealing with the coupling, with the inertial forces created. 
And we will see little bit more about this. We will see why this could work. I mean, it’s 
not obvious that it’s going to work. With passive devices, if you put just spring and 
damper, the system is passive and is going to somehow rest at some configuration. There 
will be deflection due to – even at a steady state, like if you let it rest. What other forces 
will disturb the position? So the springs will go to their rest position but they will deviate 
a little bit because –  

Student:Gravity.  

Instructor (Oussama Khatib):Yeah, the gravity. So the gravity will create little 
disturbance. You need to compensate for the gravity, account for the gravity. You need 
also during motion account for these acceleration you are generating, that are scaled by 
the inertias and the masses so they produce coupling. As well as centrifugal coriolis 
forces. So the equation of dynamics is here. And now we need to account for that. But 
simply the concept of the control is just a spring, damper system, and the behavior is 
going to be very close to our mass spring damper, except the fact you have coupling. So 
if we start over and we want to control the robot directly with respect to the task. So we 
want to move this end effector to some location. What can you do? Still using some 
passive springs and dampers. I’m going to give you one big spring and a damper and you 
just need to place it somewhere.  

Student:Perhaps try a GPS position and it could go there? I don’t know.  



Instructor (Oussama Khatib):The GPS position is good. It will give us where the robot 
is, and we know where the robot is going so we know the error between the two. But I’m 
asking what is the concept in terms of moving – I mean, implementing a controller that 
will work with the task, instead of working with the joints? So I don’t want to use this. If 
I place all the springs at the joints, I need to know the joint displacement. I need inverse 
kinematics. If I want to control the hand –  

Student:[Inaudible].  

Instructor (Oussama Khatib):Yes. So, exactly. Just pull it. Right? Just put the spring 
there. Anyway, I gave you only one spring, so you would have to just place it 
somewhere. All right. Okay. What is going to happen here is you are going to pull the 
end effector to that location, to the resting position and it will do this. And everything 
will fall. You don’t know where it’s going to be, but it will fall. And we will see that the 
concept is as simple as this – well, in six dimensions x, y. So the spring is like six-
dimensional spring. Okay. So this is basically the concept of task-oriented control. I 
mean, you can think about the spring as passive spring or some attractive potential energy 
that you are creating at the end effector with a gradient that is pushing you towards the 
goal. And that gradient is actually here, coming from the spring. The spring has a 
potential energy when it’s disturbed, and when you go to rest, you reach the minimum of 
that energy. And essentially, you’re applying the gradient of the potential energy. Okay. 
So in space, this is what is happening. As I said, we have an inverse kinematic problem, 
we have a task that is described in terms of x, y, z, the orientation of the end effector, 
alpha, beta, gamma, whatever representation you have. You need to compute the desired 
joint motions. And then you have those desired motion, one desired motion, two, etc. 
And you look where you are, so you measure from in quarters, q1, q2, qn, you form a 
small error between where you want to go and where you are, and then you are reducing 
this error by control, independent controllers, most of the time, sent to each of the joints. 
So you have several controllers at each of the joints taking the joint from some value of 
theta to another value of theta. The problem is you have this inverse kinematic over time 
in the system. Another approach that came about as early as ’69, ’70, ’71, and there is a 
paper by Dan Whitney in ’72 describing resolved motion rate control. So rate means 
we’re looking at the derivative at the velocity. And the idea is to, instead of doing the 
inverse kinematic, using the forward kinematic and taking its inverse. The idea is to find 
a small displacement, delta theta or delta q, that corresponds to your desired 
displacement, delta x. So what do you think we have in our menu as models that could 
help there? So we would like to find a relationship between delta x, small displacement. 
So I’m at x, I would like to move a little bit, delta x. What would be the delta q? So what 
model should we use? And you don’t say it. Someone else.  

Student:Jacobian.  

Instructor (Oussama Khatib):Yes, the Jacobian. Actually, the inverse of the Jacobian. 
So here is the Jacobian. It relates precisely delta x to delta theta. All right. If you take the 
inverse, you have to make sure you’re not at a singularity, otherwise you have to do 
special treatment of the configuration. If you are outside of the singularity and if you 



have six degrees of freedom, regular case, rectangular matrix, then you can take the 
inverse. Otherwise, you have to resort to generalize inverses or pseudoinverses. So you 
compute delta theta. So for a small delta x, now you have your delta theta. Knowing your 
theta, knowing where you are, the next configuration you want to go to is what?  

Student:[Inaudible].  

Instructor (Oussama Khatib):Delta theta. So you start from your current position, x, 
you compute the error that is the x desired minus your current position, and then you 
compute your delta theta, and you add it to theta. So you keep controlling the robot to this 
theta plus, which is where you were plus the small displacement. And this is a vector. So 
here is the model. Now, the Jacobian inverse is inside your curval control loop. And you 
need to compute the forward kinematics, which is easier to compute, especially for you 
now, right. Very easy. So forward kinematics include the Jacobian. You just have to 
invert the Jacobian and for a small robot, you can get it almost in analytical form. So 
basically, you compute a delta q and you distribute it to all the joints. And you have 
controllers for each of the joints to move and form this error in delta q and you move. So 
now, you’re continuously moving. Well, this has a lot of problems in terms of the 
conditioning of the Jacobian, the fact that the Jacobian has this strange thing about its 
metric, because the space where you are measure delta x involves linear motion and 
angular motion. So linear motion is measured in displacement, in centimeters or meters 
or inches. But it has also rotational motion, measured in degrees or radians. And it’s all 
included in the Jacobian. So the metric of the Jacobian is not homogenous, and that 
creates problems. Also, you have the singularities, you have the redundancy, you have all 
of that, in addition to the fact that you have dynamics. So this works usually most of the 
time, but it works best if you use it to find the trajectory you want to execute. In the 
[inaudible] robots, often you want repeatable trajectory. And this doesn’t repeat. You will 
drift. So if you do this simulation, you will be able to find a trajectory, so resolve the 
inverse kinematic this way and then come up with a trajectory that you can execute. 
Okay. Well, let’s see how we’re going to control the robot anyway. We get joint angles, 
we are following directly the trajectory. Whatever we do, we need to control the robot. 
We need to create a motor torque that is proportional somehow to the error, so we drive 
the joints to move toward the goal. So how does it work? By the way, how many of you 
have had some control classes? Okay, that’s what I thought. So we’ll start assuming you 
know nothing. Forget everything. Okay. So what is the simplest system we can consider? 
Well, I think a mass-spring system would be the simplest you can imagine. So you have a 
mass resting on a surface with zero friction, nothing sliding. And you have a spring. You 
pull it. What’s going to happen? That you can imagine, I’m sure, everyone. What’s going 
to happen? From rest, you pull it a little bit and let it go.  

Student:Oscillate.  

Instructor (Oussama Khatib):It will oscillate. So we are very interested in 
understanding this oscillation and how the oscillation is affected and by what it’s 
affected. So this problem could be resolved and looked at through this same equation we 



used to find the dynamics. We look at this mass and we find its kinetic energy. And we 
look at the system. It has some potential energy. Where is the potential energy?  

Student:[Inaudible]. Instructor:  

I’m sorry?  

Student:[Inaudible].  

Instructor (Oussama Khatib):I cannot hear.  

Student:The spring.  

Instructor (Oussama Khatib):The spring, yeah. I’m sorry. I didn’t hear you. The spring. 
Right. So when you’re at rest, the potential energy is equal to zero. I mean, if you let it 
rest alone, you’re not intervening, potential energy is equal to zero and the kinetic energy 
is equal to zero. The velocity is zero. The kinetic energy is ½ (mx)2. So if we disturb it 
and hold it, what happens to the kinetic energy? Still zero. Potential energy? Going to be 
positive. It will increase. Now, if we let go, the potential energy starts to decrease, and 
that energy is transferred to the kinetic energy. And then it keeps decreasing, keeps 
decreasing, we come to the minimum of the potential energy. We will have the maximum 
kinetic energy. And now the velocity starts to reduce, the kinetic energy reduces, and we 
start building potential energy. And essentially, this oscillation is a transfer between K 
and V. So this is K and we can write this equation. So if you write this equation using K 
that we saw here, you take the derivative with respect to x-dot. It gives you m x-dot. The 
derivative of K with respect to x is zero. So you get the derivative of that quantity, m x-
double-dot equals F. And the potential energy of the spring is ½ (kx)2, so that gives you 
the gradient when you take the derivative with respect to x, you get minus kx. Okay. So 
the Lagrangian equation is a [inaudible] equation in this case, mass acceleration equals 
force, and the force is minus kx, it’s a conservative force. So you are transferring energy 
between minus kx and kinetic energy, which is building velocity and acceleration. For 
some reason it’s written twice. I don’t know why it’s written twice, but now I move this 
minus kx to the left-hand side of the equation and we have mass acceleration plus kx 
equal to zero. So there is no external forces. This kx is the gradient of potential energy, 
V. And this is the acceleration of your mass. Now, let’s take a look at the response of the 
system. So I’m not sure if you can see it. You see this red potential energy over there? 
This is the potential energy of the spring. And let’s imagine this green dot that is this 
point mass we are going to drop. So if we drop this point mass, it’s going to fall and it 
will oscillate. There is no friction. It will keep oscillating forever. So this is time and we 
are looking at the frequency of crossing this axis. That is, we’re going from one side of x, 
we’re going to the negative side. And there is a frequency of crossing. So my question to 
you is, in relation to these two parameters, K and m, what is the affect of m on the 
frequency? So if your mass is heavy, heavier and heavier, what is going to happen to this 
frequency? And if you’re k is smaller and smaller, what is going to happen to this 
frequency? So if k is very big, what will happen? If k is zero, what is going to happen? If 
k is zero, nothing will happen. If k is larger, the oscillation frequency. So frequency 



increases with k, and decreases with the mass. There is this quantity that we call the 
natural frequency of the system and this is the square root of k divided by m. Anyone 
knows why? Where is this omega coming from? Do you see it from this configuration 
somewhere?  

Student:[Inaudible].  

Instructor (Oussama Khatib):So basically – yeah?  

Student:[Inaudible] omega and t.  

Instructor (Oussama Khatib):Very good. You integrate the equation and analyze its 
response. If you don’t trust this result, let’s see how we can resolve and integrate this 
equation. So if we divide by m, we get the acceleration plus k divided by mx. Now, if you 
integrate this equation, you get the square root of this coefficient of x that will appear. 
And we usually will write this equation as omega2x. So the k divided by m is really the 
square of your natural frequency. And if you write this equation and do the integration of 
this equation, you get a semizoidal response, where omega appears as the frequency of 
[inaudible] over motion. So in fact, x that comes from the integration of this equation is 
some constant cosine omega t plus phi. What is phi? Depends on what? I heard initial 
conditions. Right. So from the initial conditions of position and velocity can determine c 
and phi, and this is your response. And you can see that this omega is strictly the square 
root of k divided by m. Well, if you understand this, we need just one more step and then 
you understand PD control. It’s very simple. PD control, actually, is imitating the natural 
system to recreate a string. This k will become your stiffness. And m is the mass. k will 
become your proportional gain. And in a few minutes, we will see another k that involves 
the damping. That also comes into the equation, but not of conservative system but 
dissipative system, the system that dissipates energy because of friction. And then we 
will have the complete equation. So if we are looking at only conservative system 
without any damping, this is the response. Okay. So in fact, if we just add a little bit of 
friction underneath the mass as it’s moving, there will be some dissipation of energy, and 
this dissipation would be a force opposing what? Opposing the motion, opposing the 
velocity. So it’s sort of minus some coefficient times x-dot. And that friction, if we add it 
to the system, we have to add it on the right hand of the equation. So the Lagrangian 
equation is capturing the natural system on the left side. On the right side, we are putting 
a natural force, which is friction, but we cannot put it in this left side of the equation, 
because this force is not conservative, it is not a potential energy force. It cannot be 
integrated, so it appears on the right side of the equation. An external friction force 
applied by the environment on the object. And if we assume that this force is simply 
proportional to the velocity, it could be nonlinear. Friction can be nonlinear, it can have 
colon friction, it can have stiction. If you add this force to the previous equation that we 
add, it appears here. This is a second-order equation, general form of the equation. My 
system is not any more conservative, because if you oscillate now, you’re going to lose 
energy, and little by little, you lose energy and you stop. So the mass acceleration plus b 
x-dot plus kx is the general form of a linear system of the second order. And if we take 
this system and analyze is, so we divide by the mass, do you see omega2 now? So we 



have omega2 and thank you very much, it’s finished, so we can continue. Now what we 
are going to do with b divided by m? Well, when we integrate those equations, this term 
is going to appear in some form. So what we would like to do is to see how b is affecting 
this damping. So for instance, if you put a large b, very, very large b, and you start 
falling, you’re falling, you’re falling, well, if b is very large, are you going to cross? You 
will just reach that goal position without crossing. So you have sort of an over-dense 
system. If b is very small, you’re going to oscillate, and eventually, you will lose the 
energy and converge towards the minimum of the energy. So here is an oscillatory 
damped system with higher values of b divided by m. We have an over damp system. 
And as we move from here to here, there is a special value at which we just go and reach 
the x axis, and this value is called the critically damped system. And remember this; 
we’re going to use it a lot. Because we try to imitate this behavior when we control any 
of the system. We will try to make it critically damped system. So we need to know for 
which value b divided by m reaches this value, this state. And the value of b divided by m 
is simply 2 omegan. So when b divided by m is equal to 2 omegan, omega is square root 
of k divided by m. Well, then we have a critically damp system. And this comes just 
simply from the integration of the equation, this condition. So now, you can compute b. 
The critically damped b is equal to what? 2 omegan times m. So if you know your mass, 
if you know your k, then you can compute your b to be a gain for your control system. 
Here b is the natural damping of the environment, so the system is passive. So let’s take 
this 2 omegan and try to make it explicit in that first equation. So I’m going to take this 
equation and I’m going to write is as a function of omega and as a function of this 
critically damped system. So to do that, we take b divided by m, which is the value that 
we have right now, and compare it to the value that will give me critically damped 
behavior. So b divided by m is compared to this critically damped b divided by m. So this 
is a sort of ratio. It’s damping ratio. And I need to replace b divided by m by something 
that makes 2 omegan appear, so I need to divide by this and multiply by this. You agree? 
So on the left I have this ratio, and we call this the natural damping ratio. And we use this 
symbol to represent it. What do you call this symbol? Psi? So we use psi. Psi represents 
the natural damping ratio. It’s b divided by m divided by 2 omegan. So for which value 
the natural damping ratio gives me critically damped system? Okay. When zetan is equal 
to one, it means that b is simply twice the square root of km. And for this value, I will 
able to have a critically damp system. Okay. So far so good. Not too confused? So we 
introduced two notions, the natural frequency, square root of k divided by m, and the 
natural damping ratio, b divided by two square root of km. And now we can analyze our 
system and write it in this form. So the acceleration, it was m. We divided by m and we 
can write the equation in this way, we can write it acceleration plus 2 zeta omega 
velocity, plus omega square root of velocity of x is equal to zero. Now, the time response 
of this requires us to integrate this equation. And if we integrate this equation, we will 
have this response. Because of the damping, the amplitude of the semizoidal is reduced as 
you move. There is a decrease, and this decreases is exponential. And this decrease 
depends on zeta and omega. You have the semizoidal motion, which is function of your 
natural frequency omega, but it’s also function of your damping ratio. You can see when 
zeta is equal to one, this will become zero, because sine of zero. And if it’s greater, then 
there is no cosine, because you will have only the exponential. So here is the response. So 
you have this exponential, and you have the frequency that is now function of omega and 



square root of one minus zeta2, that is the period is 2 pi omegan square root of one minus 
zetan2. So it’s not omegan anymore. omegan was the natural frequency, but this thing 
that appears there is sort of a natural frequency that is affected by the damping. So we 
call it omega damped natural frequency. So it was omega the natural frequency, and now 
it is damped. All right. I think this is the last definition you need to remember. And with 
this, we can do almost everything, except the nominalities we have to deal with a little 
later. But omega, when you have damping, is really omegan the natural frequency that 
appears in your spring scaled by square root of one minus zeta2, which comes from your 
damping b divided by the mass and the spring or the gain of your system. All right. So 
these are characteristics of a second-order system, and what we need to do is to just 
inspire our control by this, and then we will be able to recreate that behavior simply by 
selecting what? If you start with the mass and now you want to create a system like this, 
what do you need to select?  

Student:k? Instructor 

Select the spring, which is k, the stiffness of the spring, and you need to select?  

Student:b.  

Instructor (Oussama Khatib):So by selecting b and k, you can create the second order 
of behavior on our mass. So if you have one joint with some inertia, to create a behavior 
like this, a closed loop behavior of second order with some natural frequency, some 
damping ratio, and some damped natural frequency, you should be able just to select b 
and k and find your system. So the control of a system is going to be almost the same. 
We are going to pick omega, we are going to pick zeta, which determine k and b. And 
then you will be able to control the closed loop.  

Student:What happens when b is a function of the configuration? Does that affect how 
you handle that?  

Instructor (Oussama Khatib):Right. Well, b could be actually the most general form of 
b is b is a function of x and x-dot. And even higher order. And then what you get is you 
do not get a linear system. You get a nonlinear system. So there will be additional 
disturbances on the system, and you need to do two things, either to model your friction 
and then try to compensate for that, and that’s what we’re going to do for centrifugal 
forces. That’s what we’re going to do for the fact that the mass is configuration 
dependent. But once you model it, you can integrate the model in your control and you 
can compensate for those nonlinearities. Then at the end, after compensation, you come 
to this form, a linearized form. So what we’re going to do, actually, later, is to go and 
compensate for the gravity, compensate for centrifugal coriolis forces, compensate for 
nonlinearities, like friction, and then reach a level where we have simply a decoupled 
system with m or n masses that we can control using this. Now, compensating for friction 
is very dangerous. It’s not easy. You cannot just go and do some estimate and 
compensate for the friction. You can compensate for the friction – we can try to 
compensate for the friction if you want. I’ll show you how dangerous it is. Okay, here is 



our – what is the name of this robot? Let’s move it. Well, it has some friction. This 
friction it has – you see I’m moving it and, well, it has friction because it has natural 
friction, but if I remove this friction, now I removed the friction. Look what’s going to 
happen. I’m going to apply a small force. Are you all attached? All right. We saved it. So 
you can see if you compensated for the friction, you will have quickly oscillations and 
you will have instabilities. So let’s say the robot is controlled now with these springs. 
You have 400 – these are the value of the springs. And you have some value for the b’s, 
basically in here, 40. This is joint three. So if we change this to be 40, you see I’m pulling 
now. It is a little bit moving. You can see joint three. If I pull on joint two, it is stiffer. 
Joint three is responding. I mean, if we can use this game – four is good. No, that’s too 
much. Let’s make it four. Now it’s easier to move. But you see the damping. It’s still 
over-damped. When you move it, it is not responding, so let’s make this very small. Now 
there is a little bit of motion if we make this zero. So now, if we start putting negative 
damping to compensate for the natural friction, we’re going to go unstable. So this is 
small amount. How about minus nine? And let’s put a little bit higher here. Okay. And 
obviously, you’re going to go unstable. The real time is not real. That’s why it is a little 
bit weird, but it is – so don’t try this. No negative damping. Works. Positive damping is 
pretty good. Okay. So remember, this omega, is it bigger or smaller than omegan? So you 
get your omegan from square root of k divided by m, and now your omega after damping 
is smaller. Good. Okay. Don’t look now at your notes, please. You have the answers, but 
think about this. What is your damp natural frequency? We just saw the expression so 
don’t look at your notes. Try to compute it. So how do you compute your damp measure 
of frequency? You need to compute the undamped measure of frequency. The natural 
frequency is what? Eight divided by 2 square root is 2, your damping ration is what? b 
divided by square root of kilometers, km. So km is 16 square root is four, two is eight. 
I’m not going to do it. So this is your omega, zeta is – it’s easy to remember b divided by 
2km2. Remember that. And your omega is 1.6. So you reduce it from 2 to 1.6. So we 
have another video segment next time, but we will skip it now. We have a little bit more 
time, so I’m going to go over one degree of freedom that we are going to control exactly 
as we did with a passive system. So one degree of freedom robot, we’re going to assume 
that the robot has just an inertia or maybe a mass, so it’s sliding. Maybe mass is better. If 
we take a prismatic joint, so a prismatic joint is going to involve just the mass of the 
moving link. And we’re going to move it with a force and we are going to create this 
force as a spring. And now we want to move to some location, so that would be the 
resting position of the spring. And then we can recreate exactly the same behavior on the 
robot. So here is the one link robot. It’s just simply a mass. Probably this is the simplest 
robot you can imagine. It is a mass moving under this force of the motor. So the motor is 
going to apply a torque translated into a force, f. And you want to move it from its current 
position to x desired. Okay. Simple problem. So we have mass acceleration equals force. 
So now, your force is your motor force. And your task is to create a force that will let you 
move this prismatic joint from its current position to the goal position desired. So the 
same thing as a spring, what we’re going to do is we are going to create this spring or 
potential energy, whose minimum is at x desired. So the potential energy that you’re 
creating is positive everywhere except at xd is equal to zero, so it’s zero at your desired 
position, and it means that you could have something like a quadratic potential energy 
with some gain, kp, which produces a gradient that is equal to what? What would be the 



gradient of this potential energy? f should be what? So you take partial derivative with 
respect to x. And that would be k times x minus x desired. So new system is simply mass 
acceleration plus kp(x) minus x desired. So here, we have the zero of the spring moving, 
changing with your desired position. That’s the only difference. And that doesn’t change 
anything. That just changes the zero. So instead of talking about stiffness, we are going to 
talk about the gain that you are using for your error in position, so we call it position gain. 
And immediately, we can go to the equation and analyze what happens if I apply this 
controller and whether this control is going to be stable or not. We can go and do this 
analysis on the equation on that system, and we analyze what happens when we apply a 
force that is the gradient of this potential energy. So our potential energy is this. We took 
the gradient of the potential energy and we applied it. Now going from this page to this 
page, it’s interesting, because here I was looking at just one degree of freedom. But if we 
do here, we can show that whatever the number of degrees of freedom, if we apply a 
controller like this, essentially, so this could be six degrees of freedom, 20 degrees of 
freedom, whatever the number of the system. If your potential energy is in this form, and 
if you are applying a force that is the gradient of that potential energy, then what you can 
do is – you see this equation here? You’re applying this force there. Well, you can move 
it to the left side and now you have your potential energy in this equation. So what is 
happened here is that your Lagrangian equation is showing you that you have a system on 
the left-hand side that involves only kinetic energy and potential energy equal to zero, 
zero external forces. So what do you expect in terms of the stability of the system? So if 
you have a mechanical system under potential energy and kinetic energy with no external 
forces. Because all the forces are conservative, are gradient. So what we can say about 
this system?  

Student:Stable.  

Instructor (Oussama Khatib):It is stable. So simply by selecting your controls, your 
motor controls, to be the gradient of potential energy, you guarantee that your system is 
going to be stable. So this is a very important result, because now we know that if we use 
this form of control, sort of proportional to the error, which is the derivative of our 
potential energy, then we are going to be stable. Now, stable is not sufficient, because it 
can be oscillatory stable. We know the response of this system is going to oscillate. So 
this force is not sufficient. What should we do? We should add some damping. We 
should add some versipity forces. So in here, I’m going to change this zero with some 
damping. Very good. We’re almost there. So this force is not in the potential energy it 
cannot move to the left. It is going to be there. And I’m going to put an external versipity 
force. I’m going to put a damping force. But I need to know in which condition. What are 
the conditions on this force? What conditions are required in order to make the system 
asymptotically stable? What does it mean, asymptotically stable? You understand what it 
means? So this is the behavior of oscillation that are critically damped or over-damped, 
your system will converge toward the goal and reach that goal. This is what we are trying 
to achieve. And this versipity force that we saw before was doing something to the 
system. Someone here said something about that force. That force was doing something 
to the motion. So what is the condition on Fs? That is the question.  



Student:[Inaudible].  

Instructor (Oussama Khatib):It has to oppose the motion, right. So if you are moving in 
some direction, you should oppose that motion. So what would be the simplest way to do 
that? Fs should be if your motion is measured with a velocity x-dot.  

Student:[Inaudible].  

Instructor (Oussama Khatib):To the velocity, right. So if you are in higher dimension, 
basically this could be a force that is opposing your velocity. And what you need to do to 
make sure of is what? In order to oppose the velocity that the dot product between the 
two factor is negative. So if your force that product with the velocity is negative for any 
non-zero velocity, you are asymptotically stable. Very simple. So pick one force that 
satisfies this condition, the simplest one. You just said it. So you can pick minus kv x-dot 
with kv positive that would satisfy this condition. So if we apply the Fs equal to this 
linear damping, then essentially, we take this control, the conservative part of the force, 
and add to it the damping part. These two pieces represent the PD control, proportional 
derivative. So if you want to move to a goal position, all you need is a term that captures 
this error. This goal position could be far away, even, so it’s a step response. You’re 
stepping x to this goal position, and you’ll have damping that is trying to reduce x-dot to 
zero, because here you can have x-dot minus x-dot desired. But because you are not 
tracking a trajectory, you are just going to a goal position, you want to stop at the goal 
position. So it’s x-dot minus zero. This is the PD control. Now, how we design this 
control, how we pick kv, depends on the similar characteristics we studied earlier with 
passive system and natural system. So the kp is gong to be picked so that kp divided by 
m, the mass of the system, gives you the omega that you wish. So when you are 
controlling your robot, do you wish to have a small omega or a large omega? What does 
omega do to the response? Small omega. So if you want to move from here to here with 
small omega, you – takes long, long time. So usually, you want much faster response. If 
you want to move slowly not only the time response, but also the stiffness of your 
system, because your stiffness is depending on kp. Your disturbance rejection is 
depending on kp. We will analyze kp and see why we want higher kp's. We will analyze 
kp and see its limitations and we will see how we pick those kp's and kv's for given 
performance of omega and zeta on Wednesday.  

[End of Audio]  

Duration: 70 minutes  


