
an
Introduction
to Robotics
with NAO

A STEM integrated,
Project Based approach
to learning robotics and
computer science

mike beiter
Brian coltin
Somchaya Liemhetcharat

Aligned to the Common Core
State Standards Initiative

2

3

Welcome to NAO.

I hope that you will find working with NAO robot platform as interesting
as my students have. Many of you may have worked with robots in the
past, Robots such as Lego Mindstorms™ or FIRST™ Robotics. I think you
will find this a completely different experience.

NAO is humanoid, two arms, two legs, eyes, ears, he can walk and talk.
Notice how I said “He”, if you are like my students you will find yourself
personifying your NAO immediately. We named ours “Pablito”, and for us
as we created the artificial intelligence, and developed behaviors for our
robot he took on the personality of his programmers. I believe it is this
“humanness” that makes working with NAO so fascinating, because
it can do so much that you can do, the possibilities of what you can do
with the robot are limitless.

After only a few short weeks of working with this curriculum you will
have your robot, walking, talking, listening, and interacting with the
environment around it. Once you do that I am sure that you will come up
with hundreds of uses that we could never have dreamed. Your creativity
and imagination are the only things that limit what you can do with
NAO, from a service robot to help children, or the elderly, the police, or
fireman, to an entertainer dancing, singing and chatting with its audience.

Post your videos on YouTube® so you can share your experiences
with the NAO community. We would love to see your videos!

foreword

Mike Beiter
Computer Science Instructor
Central Career and Technical School
Erie, PA
Mbeiter@eriesd.org

4

5

>> Module 1 – Hello World!
** Objectives

** Lesson plan

** Exercises

>> Module 2 – Walk it Out
** Objectives

** Lesson plan

** Exercises

>> Module 3 – Hearing Things
** Objectives

** Lesson plan

** Exercises

>> Module 4 – Let’s Dance
** Objectives

** Lesson plan

** Exercises

>> Module 5 – Sense and Act
** Objectives

** Lesson plan

** Exercises

>> Module 6 – Do the Robot
** Objectives

** Lesson plan

** Exercises

>> Module 7 – Face Off
** Objectives

** Lesson plan

** Exercises

>> Module 8 – Object Recognition
** Objectives

** Lesson plan

** Exercises

table
of content(

>> Module 9 – Human-robot Interaction
** Objectives

** Lesson plan

** Exercises

>> Module 10 – Finding Your Way
** Objectives

** Lesson plan

** Exercises

>> Introduction for teachers	

>> how to use this curriculum

>> SUGGESTED TEACHING PRACTICES

>> Modules Questions and solutions

6

7

8

9

23

37

53

67

87

105

113

131

139

169

6

Welcome to NAO.

This curriculum has been designed to allow you to develop interesting,
challenging and fun projects with your robot. I have been teaching
computer science for the last 20 years. I began in the days of the
first PCs and I currently teach computer science to Grades 9 and 11
at a Comprehensive Career and Technical School, and as an adjunct
professor of Computer Science at two Universities. Over the years I have
taught with many types of technologies: Robotic arms, Lego Mindstorms,
PLC’s and all different types of computers. I believe this is the most
exciting curriculum I have ever been involved with.

When our school district first purchased NAO robots I was unsure about
the cost versus benefit of these platforms. What I have found is that the
humanoid robot generates and unparalleled interest from students.
My traditional computer science students are driven to program the robot
to do everything from dance to fold laundry. But it is not the traditional
students that really surprised me so much as the overwhelming response
to the robot from non-traditional students: I had students from our
nursing and carpentry programs beating down my door for an opportunity
to work with NAO. These students were captivated by the humanoid robot
in a way that traditional robotics platforms and computer software simply
could not duplicate.

This curriculum has been developed with a number of goals. First and
foremost it is engaging for the students. As you look at the modules I do
not believe you will find a single thing that will cause students to roll their
eyes and say “Do we have to do that?”. Second, and just as important,
is that it is project-based and aligned to the Core STEM standards as
laid out in the Common Core Standards. Each module covers a set of
objectives specific to learning robotics, but also includes objectives,
standards, and lesson plans that cover a wide variety of academic core
standards in Math and English. As a general rule you should start with
Module 1 and work foreword, but other than the first module you could
really pick and choose modules to fit your needs.

I hope that you will find this curriculum to be an exciting and useful
addition to your Computer science or robotics classroom. I am confident
that your students will find that this is one of the most enjoyable and
interesting ways they have ever learned.

Introduction
for teachers

7

How to use
this Curriculum

As a general rule each module is independent. In each module you will
find a set of robotics/computer science objectives, as well as related
academic STEM objectives.

Both sets of objectives will identify the common core standards
addressed in that module.

This curriculum has been done with the 2.1 version of Choregraphe,
our programming software. The screenshot of the software included in this
curriculum may be different depending the version of Choregraphe you have.

You are allowed to reproduce the
content of this book and to share it
with your classroom only.

Aldebaran does not warrant the accuracy of the provided content
which shall be used at your own risk and under your control.
Aldebaran disclaims all liability related to the use as well as the content.

All rights not specifically granted herein are reserved to Aldebaran.
Aldebaran and/or its licensor shall retain all rights, title and interest
and ownership in and to the book and its content.

8

suggested
teaching practices

1/	Have students pre-read the module. You may want to use
the KWL Reading Strategy*

>> Prior to reading
** have students prepare a list of what they already Know about the subject

** Then create a series (1-3) questions of what they want to know.

>> After reading
** Have student list what they Learned from the reading

2/	Plan Plan Plan

>> Have students present a short algorithm or step by step instruction set 	
	 for each module

>> Ask them to include safety and best practices for keeping NAO safe

3/	Complete the module questions at the end of each module

4/	Complete the module

>> Have students complete the module with NAO and demonstrate
	 the completed behaviors

>> You may consider having students do a Lab Report of the module

A.	Title
	 The title states what the module covered

B.	Introduction / Purpose
	 A paragraph that explains the objectives and purpose of the module

C.	Materials
	 List everything needed to complete the module

D.	Methods
	Very similar to your prior algorithm a list of steps required in order to complete
the module.

E.	Data / Observations
	What actually happened while you complete module. (record both expected
and unexpected results)

F.	Results
	 A conclusion paragraph that states what you learned from the module

Valmont, W | 2003 | Technology for literacy teaching and learning | New York: Houghton Mifflin Company.
Allington, R. and Cunningham, P | 2003 | Classrooms that work | Boston: Allyn and Bacon.
Padak, N. and Rasinski, T | 2004 | Effective reading strategies: teaching children who find reading difficult | New Jersey: Pearson Education, Inc.
Buehl, D | 2006 | Classroom strategies for interactive learning | Delaware: International Reading Association.

*

9

>> How to switch on NAO humanoid robot

>> How to connect to NAO with
	C horegraphe on a computer

>> How to make NAO speak
	 with Choregraphe

** RST.9-10.3. Follow precisely a complex multistep procedure
when carrying out experiments, taking measurements, or
performing technical tasks, attending to special cases or
exceptions defined in the text.

>> How to vary the pitch and speed of
	NAO ’s voice

** RST.9-10.3. Follow precisely a complex multistep procedure
when carrying out experiments, taking measurements, or
performing technical tasks, attending to special cases or
exceptions defined in the text.

>> How to program NAO to speak
	 with Python

** RST.11-12.3. Follow precisely a complex multistep
procedure when carrying out expweriments, taking
measurements, or performing technical tasks; analyze the
specific results based on explanations in the text.

** RST.11-12.8. Evaluate the hypotheses, data, analysis, and
conclusions in a science or technical text, verifying the data
when possible and corroborating or challenging conclusions
with other sources of information.

** RST.11-12.9. Synthesize information from a range of
sources (e.g., texts, experiments, simulations) into a coherent
understanding of a process, phenomenon, or concept,
resolving conflicting information when possible.

** RST.11-12.10. By the end of grade 12, read and comprehend
science/technical texts in the grades 11–12 text complexity
band independently and proficiently.

Preparing to Use NAO

Basic Task: Hello World!

Intermediate Task: Say Anything!

Intermediate Task: Voice Acting

Advanced Task: Speak with Python

Additional Exercises

Module Questions

hello
world1

01/

02/

03/

04/

05/

06/

07/

learning
In this module, students will learn:

contents

* Reference Common Core Stem standards

10

Preparing to use
nao

Before we begin to use NAO, we will learn how to charge, set up, and handle the robot safely.
In our figures, red arrows mean single-click, blue arrows mean click-and-drag, and green arrows
mean double-click.

01/
When NAO is not moving, plug the charging cable into the robot’s back (see picture to right).
This will ensure that the robot remains charged for your continued use. If the robot is charging,
the charger’s light will turn red.

02/	

Before turning on NAO, make sure it is in a stable position. The pose shown in the image below,
with the back upright and both feet flat on the floor, is recommended. Do not place NAO
on a table where it can fall and damage itself.

03/	

Turn on NAO by pressing the chest button. NAO’s lights will turn on.
NAO can take up to several minutes to boot, and it will make a sound when finished.

1 - hello world
1 - preparing to use nao

11

04/
Now, you will connect to NAO using Choregraphe. First, start Choregraphe on your computer.
The following window will appear. Click the indicated “Connect” button, which is green and looks
like a wireless signal, to connect to NAO.

05/
The window below will appear, with your robot listed on the table to the left.
Select your robot in the list, and click the “Connect To” button.

06/
Now you should be connected to NAO. Try moving some of the NAO’s body parts by hand. The
window to the right in Choregraphe will update to reflect the changes in NAO’s joint positions.

1 - hello world
1 - preparing to use nao

12

basic task
hello world !

01/
In Choregraphe, look at the “Box List” to the left. Navigate to Audio > Voice, then drag and
drop a “Say” box to the central area. This central area is called the workspace, and contains the
commands that the robot executes.

02/	

To execute the “Say” box, we must connect it into the program “flow”. Click on the small arrow to
the left of the workspace, and drag a line to the arrow on the left of the “Say” box. The boxes will be
executed sequentially in the order that they are connected. The last box should connect to global
stop [x] on the right hand side of the work area.

Next, we will program NAO to say “Hello.”
NAO uses a text-to-speech engine to convert
text into sound, which is output through
the speakers.

1 - hello world
2 - hello world

13

03/	

Finally, click the green “Play” button next to the “Connect” button. NAO should say “Hello.”

1 - hello world
2 - hello world

14

Intermediate Task
Say Anything!

01/
Beginning with the results of the previous task, double-click on the “Say” box.

02/	

A “Localized Text», will appear connected to a “Say Text” box. To return to the previous screen,
click “root” on the upper box hierarchy “breadcrumb trail”.

03/	

Replace the “Hello” in the text box with “Hello World!”.

04/

05/

Click the play button, and listen to what NAO says.

Try experimenting with different words and phrases.

We will learn how to change the words
NAO says to “Hello world.”

1 - hello world
3 -say anything

15

Intermediate Task
voice acting

01/
Click on the wrench in the bottom left corner of the “Say” box.

02/	

The window below will appear:

03/	

Move the two sliders to a different position and click OK.
Press the play button for the NAO to speak again.

04/
What changed? Try experimenting with different values for each of the sliders.
What do the two parameters control?

NAO can speak faster, slower, lower or
higher, depending on two parameters,
“Voice Shaping” and “Speed”.

1 - hello world
4 -voice acting

16

Advanced Task
Speak with Python

We will begin with a simple programming exercise in Python, where we have the robot say “Hello
World” exactly as we did before with the Choregraphe Say box. We will do this by creating our own
box in Choregraphe that executes our python code.

01/
First, open an empty workspace in Choregraphe by creating a new project.

02/	

Right click on the workspace, and choose “Create a new box” from the menu.

03/	

A dialog will appear. In the “Name” box, enter “Python Say”, and in the tooltip
box, enter a description of what your box will do. Do not change any of the
other options. In particular, make sure the “Box Type” type is “Script”.

1 - hello world
5 - speak with python

In addition to dragging and dropping boxes in
Choregraphe, NAO can be programmed using several
programming languages including C++ and Python.
We will be using Python for our Exercises,
but documentation about programming in C++
is available online.

17

04/
Click the “Edit” button in the “Image” section. A new dialog box will appear.

05/
Click the first “Browse” button and select the image “say.png” in “interaction” directory.
This image will be displayed on the newly created box.

06/	

Click “OK” on both of the dialog windows. Your new box will appear in the workspace
with the icon you selected.

07/
Double click on the box to open the Script Editor. The Script Editor shows the Python code
that is executed by your box.

1 - hello world
5 - speak with python

18

08/
Look for the line that says “def onInput_onStart(self):”. This line is the definition for a
function (or method) named onInput_onStart. A function is a procedure which can be called
elsewhere in code. In this particular case, the onInput_onStart method is called when the box
begins executing, and the indented code below this line is called. We will modify the code below
this line to make the robot speak.

09/	

Replace pass in the onInput_onStart method with the following two lines of code, as in the
picture below: 									
		 ttsProxy = ALProxy(“ALTextToSpeech”)						
		 ttsProxy.say(“Hello world!”)

Note that in Python, the amount of whitespace (spaces and tabs) at the beginning of a line matters.
Be sure to put the exact same combination of tabs and spaces on both of these lines (double the
amount of whitespace of the line beginning with def).

1 - hello world
5 - speak with python

19

The first line creates an object that gives us access to the robot’s text-to-speech capabilities.
This object is assigned to the variable ttsProxy. We can access this object later through
the name ttsProxy.

The second line calls a different function, say, belonging to the object we just created. This
function takes an argument, “Hello world!”. “Hello world!” is a string, or a sequence
of characters, denoted by the double quote marks. The robot will speak the string that was passed
to the say method aloud.

10/	

Close the script editor window, and link your Python box to the start arrow and to the end arrow.

11/
Connect to the robot and press the play button. The robot should say “Hello world!” aloud.

1 - hello world
5 - speak with python

20

Additional
Exercises

Have NAO introduce itself and greet the class.

Have NAO play the parts of multiple characters in a play by using different voices
for each character.

Have NAO sing the alphabet by varying the voice shaping and pitch that it pronounces
each letter with.

01/

02/

03/

1 - hello world
6 - additional exercices

21

Module
questions

Intermediate 

ADVANCED

05/

06/

What does the voice shaping parameter for the Say box control?

What does the speed parameter for the Say box control?

07/

08/

09/

10/

11/

12/

Name two programming languages that can be used on NAO.

How can NAO be programmed in Python using Choregraphe?

What is a variable?

What is a function or method in programming?

What is a function argument?

Do the number of spaces and tabs matter in python?

Basic 

01/

02/

03/

04/

How can you tell if the robot is charging?

How should you place the robot when turning it on?

How should the robot be held?

How is the order the Choregraphe boxes execute determined?

1 - hello world
7 - module questions

22

23

>> How to make NAO walk using Choregraphe
>> The (x, y) coordinate plane of NAO

** A-REI.3. Solve linear equations and inequalities in one
variable, including equations with coefficients represented by
letters.

** 6.EE.6. Use variables to represent numbers and write
expressions when solving a real-world or mathematical
problem; understand that a variable can represent an
unknown number, or, depending on the purpose at hand, any
number in a specified set.

** G-GPE.5. Prove the slope criteria for parallel and
perpendicular lines and use them to solve geometric
problems (e.g., find the equation of a line parallel or
perpendicular to a given line that passes through a given
point).

>> How to convert an (x, y) coordinate into an angle
	 to turn, and a distance to walk (polar coordinates)

** G-C.2. Identify and describe relationships among inscribed
angles, radii, and chords. Include the relationship between
central, inscribed, and circumscribed angles; inscribed
angles on a diameter are right angles; the radius of a circle is
perpendicular to the tangent where the radius intersects the
circle.

>> How to make NAO turn and walk to an (x, y)
	 point using Choregraphe

>> How to use Python to program NAO to walk.
** G-GPE.7. Use coordinates to compute perimeters of

polygons and areas of triangles and rectangles, e.g., using the
distance formula.

>> How to use Python to program NAO
	 to calculate the angle to turn and distance
	 to walk, and then actuate the robot to walk
	 to that point.

** RST.11-12.3. Follow precisely a complex multistep
procedure when carrying out experiments, taking
measurements, or performing technical tasks; analyze the
specific results based on explanations in the text.

** RST.11-12.8. Evaluate the hypotheses, data, analysis, and
conclusions in a science or technical text, verifying the data
when possible and corroborating or challenging conclusions
with other sources of information.

** RST.11-12.9. Synthesize information from a range of
sources (e.g., texts, experiments, simulations) into a coherent
understanding of a process, phenomenon, or concept,
resolving conflicting information when possible.

** RST.11-12.10. By the end of grade 12, read and comprehend
science/technical texts in the grades 11–12 text complexity
band independently and proficiently.

The (x, y) Coordinate Plane of NAO

Basic Task: March Forward

Intermediate Task: Walk to a Point

Advanced Task: Walk to a Point with
Python

Advanced Task: Turn and Walk to a Point
with Python

Additional Exercises

Module Questions

walk
it out2

01/

02/

03/

04/

05/

06/

07/

learning contents
In this module, students will learn:

* Reference Common Core Stem standards

24

The (x, y)
Coordinate Plane
of nao

You may have learned about the (x, y) coordinate plane, and plotting points in the coordinate plane.
NAO also uses the (x, y) plane to refer to places! The figures below show NAO’s coordinate frame.
The figure on the left shows the (x, y) coordinate plane, when viewing NAO from above.

The figure on the right shows the same coordinate frame in 3 dimensions.

The x-axis of NAO points forward, and the y-axis points to the left of the robot.
The z-axis, which is perpendicular to both the x- and y-axes, points up.

The units of NAO’s (x, y) coordinate plane are meters.
So, for example, (1, 2) refers to a point 1 meter in front of NAO, and 2 meters to its left.

In addition to points in the (x, y) coordinate plane, angles are also defined. An angle is measured
counterclockwise from the x-axis, as shown by θ in the figure above on the left.

2 - walk it out
1 - the (x, y) coordinate plane of nao

25

01/
Make sure NAO is in a stable position. Turn NAO on and connect to it with Choregraphe.

02/
Go to the Motions folder on the box list, and drag the Motor On/Off box and the Stand Up box
to the workspace. Connect a line from the starting box to the motion box.

03/
Drag a Move To box and then a Sit Down box (both boxes are in the Motion category),
and connect them in that order to the Stand Up box.

Basic Task
March Forward

2 - walk it out
2 - march forward

We’ll start by making NAO stand up,
walk forward, and sit down.

26

04/
As a note, the Motor On/Off box will turn the stiffness of the motors on or off.
Left click on the lower left corner of the box motor on/off box and select the on parameter
(should be on as default). When this box is run the robot will become stiff, such that you cannot
move the robot’s joints by hand.

Warning: Do not try to force the joints, and be careful to avoid getting your fingers squished
by the robot.

While the joints are stiff, battery power will be consumed at a faster rate, and the motors will heat up.
To release the joint stiffness at the end of the motion, let’s place another motor on/off box at the end of
our program. Click on the parameters (lower left wrench icon) and this time set the action to off.

05/
Finally, click the play button. The robot will stand up, walk forward, and sit down.

Be aware that when you release the joint stiffness in your program the robots joints will lose
stiffness immediately, and if the robot is in an unstable position it will fall.

2 - walk it out
2 - march forward

27

06/
In addition, the robot has a collision detection feature that monitors the local environment around
NAO and will prevent the robot from walking if it believes that there is something in the way that
could damage NAO. If you are having trouble getting NAO to complete its forward motion, you may
want to disable this feature. Please keep in mind by doing this, NAO may walk into obstacles, so if
you do not encounter problems when placed in an open area, it may be best to avoid disabling this
feature. To disable, double click on the Move To box, and enter in the highlighted text:

More information about this setting can be read in the menu help > API Reference section.
Keep this code snippet in handy when NAO is walking in a confined place, as you may need it.
Additionally, when NAO is walking or moving around keep in mind that there are a few security
areas that you will need to be aware of:

The above code eliminates these areas,
however if you wish to learn more,
the two commands that pertain to the security
areas are:

ALMotionProxy::
setTangentialSecurityDistance() > default set to .1m

ALMotionProxy::
setOrthogonalSecurityDistance() > default set to .4m

2 - walk it out
2 - march forward

28 2 - walk it out
3 - walk to a point

01/
In Choregraphe, string together a “Stand Up” box and two “Move To” boxes (both found under Motions).

02/
Click the wrench on the first Move To box to configure its parameters.

The dialog box allows you to specify how far in the x direction (forward), y direction (sideways),
and theta (rotation) the robot should move. Distances are in meters (negative indicates the opposite
direction) and rotations are in radians. Set the x and y to 0, and set some amount for the robot to
turn by setting theta to be non-zero.

Intermediate Task
Walk to a Point

In addition to walking forwards, NAO can turn in place.
In fact, NAO has an omnidirectional walk that can move
in any direction – forward, sideways, backwards, or
diagonally. But first we will learn how to turn.

29

03/
Open the same dialog for the second box. Set the x distance
to some positive amount, and the other two values to zero.
This will cause the robot to walk forward. With both boxes,
the robot will turn and then walk forward.

04/
(Optional) Add a sit down box to the chain of commands.

05/
Turn stiffness on and click the play button. Observe that the robot moves where you told it to.

06/
Consider the floor as a Cartesian plane. The origin is between NAO’s feet, the x-axis is in the
forward direction, and the positive y-axis is to the robot’s left. Pick some coordinate on the floor,
such as 1 meter forward and 0.5 meters to the left.

07/
Using trigonometry, compute what angle the robot should turn and how far it should walk to reach
this position. Set these values in the two Move To boxes.

08/
Run the program again on NAO. See that it goes where you asked.

09/
In robotics, the estimated change in position of a robot measured from sensors is called its
odometry. Using a ruler or tape measure, measure the exact position where the robot ended up.
How far does it differ from the position you entered? This difference is called odometry error.

Why do you think this error occurs? Would you predict the error would be smaller or greater on a
wheeled robot? Much of the difficulty in programming robots as opposed to computers comes from
the need to handle errors and noise such as this.

2 - walk it out
3 - walk to a point

30

01/
First, create your own box (right click on workspace, “Add a New Box”). Set a name, description
and image, and click OK. Chain together a Stand Up Box with your new box as shown below.

02/
Double click on your custom box to open the script editor.

03/
Enter the following lines of code in the onInput_onStart method:

 motionProxy = ALProxy(“ALMotion”)
 motionProxy.moveTo(0.2, 0.0, 0.0)
 self.onStopped()

Advanced Task
Walk to a Point
with Python

2 - walk it out
4 - walk to a point with python

Next, we will learn to walk to a point using Python.
Python is more expressive than chains of Choregraphe
boxes, and allows us to do things like compute
the trigonometric calculations that we did manually
on the robot.

31

The first line creates a proxy to ALMotion, which allows us to call motion functions. The second line
calls the moveTo method, which moves the robot a specified distance.

The first argument (number in parentheses) is the distance in meters to walk in the x direction.
The second argument is the distance in the y direction, and the third is the amount to turn in
radians. These parameters have the same meanings as the parameters to the Choregraphe box.
You can change these numbers if you wish.

The final line calls a method to terminate the Choregraphe box and transfers execution to the next
box.

Once again, recall that the three lines must have the same indentation level.
Note that everything in a line following a # sign will be ignored: these are comments. Comments
are intended to help the programmer understand the code, but are not executed by the computer.

04/
Turn stiffness on and click play. The robot should walk forward.

05/
(Optional) Try other combinations of parameters to the moveTo method,
and observe what happens.

2 - walk it out
4 - walk to a point with python

32

01/
Create a new Choregraphe box by right clicking on the workspace and choosing “Create a New Box.”

02/
In the Edit Box window, enter an appropriate name and description, and choose an image.

03/
This time, our box will have two parameters: the x and y coordinates on the Cartesian plane
that the robot should walk to. Click the plus button on the line that says “Parameters” to add
a new parameter.

04/

A dialog box will appear. Set the parameter’s name to “x”, enter a description, set it to type
float, and enter a default value of 0.2. Set the minimum and maximum values to -2.0 and 2.0,
respectively. Then click OK.

Advanced Task
Turn and Walk to
a Point with Python

2 - walk it out
5 - turn and walk to a point with python

Now, we will implement our behavior
to turn and then walk forward
to a point using Python.

33

05/
Add a second parameter, “y”. Enter the same values as you did for “x”, aside from the name
and description.

06/
Click OK to construct the box, and connect it to a Stand Up box connected to the starting arrow.

07/

Click the wrench on the box you created. You can set the x and y parameters similarly to how you
would for any other box. Enter values of your choice.

2 - walk it out
5 - turn and walk to a point with python

34

08/
Double click on the box you created to edit the python source code. Enter the contents of the
onInput_onStart method shown below, and add import math to the top of the script, which
allows usage of some math functions (such as atan2 and sqrt).

This code takes the x and y parameters, computes the angle to turn using the atan2 (arctangent)
function, and computes the distance to walk forward using the Pythagorean theorem, sqrt (square
root) function, multiplication and addition. It then calls the same moveTo function we used before
twice in succession: first to turn and then to walk forwards.

09/
(Optional) Add a Sit Down box as the final command.

10/
Turn stiffness on and hit play. The robot should walk to the location you specified.

2 - walk it out
5 - turn and walk to a point with python

35

Additional
Exercises

Have NAO walk in a square, that is, walk forward and turn, walk forward
and turn, walk forward and turn, and walk forward again.

Have NAO walk in a triangle.

Program a Python script that causes NAO to walk in a square or triangle.

Program a Python script that causes NAO to walk in any regular polygon
with n sides (n > 2).

01/

02/

03/

04/

2 - walk it out
6 - additional exercices

36

Module
questions

Sketch the coordinate plane of NAO, and plot and label the following points:
 a.The point (0.5, 2).
 b.The point 3 meters directly in front of the robot.
 c.The point (5, 3).
 d.The point 1 meter to the left of the robot.
 e.The point at an angle of -60° from the robot and 3 m away.

Compute the angle from the robot to each of the above five points.

01/

02/

The Coordinate Plane

Intermediate 

ADVANCED

09/

10/

11/

What is odometry?

Why do odometry errors occur?

Define the Cartesian plane, and explain how it relates to NAO walking.

12/

13/

14/

15/

16/

What is a parameter?

Name the parameters used to make NAO walk.

Name three math functions used in programming walking for robot.

What do atan2(1.0, 0.0), atan2(0.0, -1.0), and evaluate to?

Why is atan2 used instead of a single-argument arctan function?

Basic 

03/

04/

05/

06/

07/

08/

What are the three parameters in the Move To box?

What unit of measure is used for x and y coordinates?

What is theta?

What unit of measure is used for theta?

For NAO, what does “stiffness” mean?

What problems do you face if stiffness is always set to 100%?

2 - walk it out
7 - module questions

37

Speech Recognition on NAO

Basic Task: Speech Recognition

Intermediate Task: Distinguishing
Multiple Names

Advanced Task: Self-Introductions

Advanced Task: Specialized Introductions
with if Statements

Additional Exercises

Module Questions

>> What speech recognition is

>> How to perform speech recognition
	 on NAO

>> How to vary the threshold of speech
	 recognition

>> Boolean (true/false) operations

>> Branching conditionals (switch statements) 	
	 for complex logic operations

>> How to create speech-based interaction 		
	 behaviors with NAO

>> How to process strings in Python

>> How to use if statements in Python
** RST.11-12.3. Follow precisely a complex multistep

procedure when carrying out experiments, taking
measurements, or performing technical tasks; analyze the
specific results based on explanations in the text.

** RST.11-12.8. Evaluate the hypotheses, data, analysis, and
conclusions in a science or technical text, verifying the data
when possible and corroborating or challenging conclusions
with other sources of information.

** RST.11-12.9. Synthesize information from a range of
sources (e.g., texts, experiments, simulations) into a coherent
understanding of a process, phenomenon, or concept,
resolving conflicting information when possible.

** RST.11-12.10. By the end of grade 12, read and comprehend
science/technical texts in the grades 11–12 text complexity
band independently and proficiently.

hearing
things3

01/

02/

03/

04/

05/

06/

07/

learning contents
In this module, students will learn:

* Reference Common Core Stem standards

38

speech
recognition
on nao

Humans frequently communicate through speech. For example, a common greeting when we meet
someone is “hi” or “how are you?” We process speech automatically, and understand the meaning
of the words we hear nearly instantaneously. On a robot, this process is more involved.
NAO humanoid robot has microphones on its head, which it uses to listen to sounds around it.

 However, unlike our ears that listen for sounds all the time, NAO has to be programmed to listen
for sounds at specific times. After it hears human speech, NAO performs speech recognition
with an algorithm to convert what it hears into words that it knows.

To do so, NAO requires a library of words that it expects to hear. For example, the library can
contain two words, “yes” and “no”. When NAO processes the sounds it hears, it will classify it as
either “yes”, “no”, or neither of the two. You may have had experience with a similar system when
using automated phone services or voice control on your cell phone, where you are given a list
of options that you can speak to select.

Once a word is recognized, NAO can then be programmed to react in different ways. After hearing
“yes”, NAO could reply with “I am happy” and after hearing “no”, NAO could say “I am sad”. If NAO
doesn’t understand the words (it did not sound like “yes” or “no”) then NAO could reply “I don’t
know.” This is called a conditional in computer or robot programming, and we will go into more
detail in the tasks below.

3 - hearing things
1 - speech recognition on nao

39

01/
First, drag a Speech Recognition box (found in Audio > Voice) to the workspace and link it to
the start arrow.

02/
Click on the wrench to examine the parameters for speech recognition. Set the word list to “nao”.
This defines the library of known words NAO will listen for. Putting “nao” in the library will make
NAO listen for its own name. Set the threshold slider bar to 10%. The threshold controls how
similar the sound has to be for NAO to recognize it; we will discuss this in more detail later.

Basic Task
Speech Recognition

3 - hearing things
2 - speech recognition

In this lesson, we’ll learn how to use
speech recognition on NAO.
We will program NAO to recognize its own
name and to give a greeting in response.

40

03/
Next, create two Say boxes and connect one to each of the two bottom right connectors on the
speech recognition box. The top connector is triggered when a word you entered in the word list
is heard, and the bottom box is triggered when it is not. This construct is called a conditional.

04/
Double click on each of the Say boxes to configure what NAO will say. The top connector triggers
when the robot hears the word “nao”. Change this Say box to say a greeting such as “Hello, I am
Your Robot.” Configure the second box to make NAO say that it didn’t understand.

3 - hearing things
2 - speech recognition

41

05/
Finally, connect both the boxes on the lower right of the Speech Recognition box to the X mark on
the left side of the same box. This will make the robot stop listening for new words after hearing
the first one.

06/
Now, hit the play button on Choregraphe. You will hear a sound on NAO that indicates that it is
listening. Its eyes will turn blue in color as well. Once NAO hears a human speak, its eyes will turn
yellow. If it understood the words it heard, the eyes will flash green, and if it did not understand,
the eyes will flash red. When NAO stops listening on its microphones, it makes another sound
through its speakers.

3 - hearing things
2 - speech recognition

42

01/
Drag a Speech Recognition box to the workspace.

02/
Click the wrench to configure the word list. Set the word list to “nao;r 2 d 2;c 3 p o”.
The semicolons separate different words in the library. Do not forget to add the spaces.
Why are these spaces necessary? Once again, set the threshold to 10%.

Intermediate Task
Distinguishing
Multiple Names

3 - hearing things
3 - distinguishing multiple names

In this next exercise, we will program
the robot to listen for different names
and respond differently after hearing
each one.

43

03/
Next, add a Switch Case box. This is found in the list of flow control tools. The Switch Case box
compares its input to a list of predefined values, and triggers one of the boxes to the right based on
its input.

04/
Change the predefined inputs of the Switch Case box to match the words in the speech recognition
library. You need to add quotation marks around each word to indicate that it is a string, e.g.,
“nao”. Note also that the capitalization should be the same as in the speech recognition library—
the strings must match exactly. When a word in the speech recognition library is heard, the Speech
Recognition box sends that word to the Switch Case box.

The Switch Case box then compares its input with each of the cases (“nao”, “r 2 d 2”, and “c 3 p o”)
and triggers the appropriate box to the right of the matching word.

3 - hearing things
3 - distinguishing multiple names

44

05/
Now add four Say boxes, and connect the boxes as shown below.

06/
Add messages to the Say boxes. The Say box connected to the Speech Recognition box will be what
the robot says if it doesn’t understand the human. The three boxes connected to the Switch Case
box will be the robot’s responses when it hears the corresponding messages. For example, the Say
box on the top right will be triggered when “nao” is heard.

07/
Finally, connect the two bottom right boxes on the Speech Recognition box to the X mark
on the same box, as we did in the previous exercise.

3 - hearing things
3 - distinguishing multiple names

45

08/
Press play and try saying the different names.

09/
You may notice that the speech recognition is not perfect. For example, the robot may hear
“c 3 p o” when you said “r 2 d 2”. Or, the robot may not understand what you said, even though
you said “nao”. The level of recognition can be adjusted via the threshold in the Speech
Recognition box.

Recall that we set the threshold to 10% in the Speech Recognition box. This means that the robot
has to only be 10% sure of what it hears to recognize the word. Why not set the threshold to a much
higher number like 90% then? If the threshold is too high, then the robot may not understand the
words you say because it is unsure.

Try changing the value of the threshold, to get a better idea of what it does and how it affects
the speech recognition. What value works best?

3 - hearing things
3 - distinguishing multiple names

46

01/
Create a Speech Recognition box and connect it to the start arrow.

02/
Set the word list and threshold as in the previous exercises.

Advanced Task
Self-Introductions

3 - hearing things
4 - self-introductions

In this exercise, we will create a box
using Python that introduces NAO
based on whichever name a human says.

47

04/
Create a new box. (right click, choose “Create a New Box”). Choose an appropriate (for example
Speech box) name, tooltip and image. In the Inputs / Outputs / Parameters section, click the center
button to the right of “Inputs: onStart”, the first line. This allows us to set the properties of the
onStart input.

05/
A dialog box appears. Change the type to string, and click OK. This makes the input to the box take
a string (a sequence of characters).

3 - hearing things
4 - self-introductions

48

06/
The Speech Recognition box outputs a string, the word that has been recognized. Now we can link
the two boxes together since the onStart input accepts a string.

07/
Double-click on the new box to edit the Python source code. Add the following two lines to the
onInput_onStart method.

 ttsProxy = ALProxy(“ALTextToSpeech”)
 ttsProxy.say(“Hello, I am ” + p)

In the earlier exercises, we created an ALTextToSpeech proxy and called the say method. What’s
new is the addition of “Hello, I am ” + p. This is called string concatenation, appending two
strings together. The p is a parameter to the onInput_onStart function. This parameter is set to
the value arriving at the onStart input, in this case sent by the Speech Recognition box.

For example, if the Speech Recognition box heard “nao”, then the expression
“Hello, I am ” + p would evaluate to “Hello, I am nao”.

3 - hearing things
4 - self-introductions

49

08/
Next, add a Say box which says “I did not understand,” and connect it to the bottom output of the
Speech Recognition box. Link the two bottom right outputs of the Speech Recognition box to the X
mark on the same box, as we have done before.

09/
Hit play and try speaking the different names.

3 - hearing things
4 - self-introductions

50

01/
Begin with the result of the previous exercise.

02/
Double click on the custom box to edit the Python source code.

03/
Enter the code shown below in the onInput_onStart method.

What does this code do? You should already be familiar with the ALTextToSpeech proxy and its say
method. The if statement checks if the following condition is satisfied, and if so, executes the code
after the colon. The p == “nao” condition is satisfied if and only if the string p is “nao”. The two
elifs (short for “else if”) are the same as the if statement, except they are executed only if the
previous if statement was not satisfied (this is the “else” part). So, this code speaks a specific
message based on the output of the speech recognition box.

04/
Run the program and try speaking the different names.

Advanced Task
Specialized
Introductions with
if Statements

3 - hearing things
5 - specialized introductions with if statements

Until now, we have always executed
the same code in each program.
But we can also use conditionals to execute
code only if some condition is satisfied.
We will modify the previous exercise to give
specialized greetings for each robot name.

51

Additional
Exercises

Have NAO ask “How are you?” Depending on what you say, NAO should reply
“That’s good to hear” or “I hope your day gets better!”

Create a chain of interactions with NAO, where it first asks if you like cake or pie.
If you like cake, it asks if you like chocolate cake or cheesecake. If you like pie, NAO
asks if you like apple pie or pumpkin pie. Finally, depending on the type of cake or pie
you like, NAO will say something appropriate relevant, such as “I like chocolate cake
too, especially with whipped cream on top.”

Create a voice-controlled robot, where you can tell NAO to walk forward,
turn left or turn right, and NAO executes the action you said.

Write a Python script to execute the actions in the exercise above.

01/

02/

03/

04/

3 - hearing things
 6 - additional exercices

52

Module
questions

What hardware devices does the robot use for speech recognition?

What is a conditional statement?

What is the purpose of the threshold parameter for speech recognition with NAO?
What value did you find to work well?

Where is the Speech Recognition box found?

Explain the three parameters of the Speech Recognition box.

Explain the two outputs of the Speech Recognition box.

01/

02/

03/

04/

05/

06/

Basic

Intermediate 

ADVANCED

07/

08/

Which conditional box in Choregraphe is used to control program flow from multiple
answers?

What punctuation is used to distinguish strings, in both Choregraphe and Python?

09/

10/

11/

12/

What module is utilized in TextToSpeech (the parameter to ALProxy)?

Define string concatenation.

What are the differences between inputs and parameters of Choregraphe boxes?

What is the syntax in Python for a chain of conditional statements?

3 - hearing things
7 - module questions

53

>> What a keyframe motion is

>> Applying the concept of center of gravity
	 on NAO

>> How to keep the NAO balanced
	 while adjusting its pose

>> How to record and execute keyframes
	 on NAO with Choregraphe

>> How to make NAO perform
	 a dance routine

>> How to use loops in Choregraphe

>> How to execute joint motions in Python

>> How to use for loops in Python
** RST.11-12.3. Follow precisely a complex multistep

procedure when carrying out experiments, taking
measurements, or performing technical tasks; analyze the
specific results based on explanations in the text.

** RST.11-12.8. Evaluate the hypotheses, data, analysis, and
conclusions in a science or technical text, verifying the data
when possible and corroborating or challenging conclusions
with other sources of information.

** RST.11-12.9. Synthesize information from a range of
sources (e.g., texts, experiments, simulations) into a coherent
understanding of a process, phenomenon, or concept,
resolving conflicting information when possible.

** RST.11-12.10. By the end of grade 12, read and
comprehend science/technical texts in the grades 11–12 text
complexity band independently and proficiently.

Keyframe Motion

Balancing NAO

Basic Task: Macarena Hand Motions

Intermediate Task: Do the Macarena

Advanced Task: Nodding Off

Additional Exercises

Module Questions

Let’s
dance4

01/

02/

03/

04/

05/

06/

07/

learning contents
In this module, students will learn:

* Reference Common Core Stem standards

54

keyframe
motion

We move our own bodies fluidly, but robots are stereotyped to move in a clunky “robotic” fashion.
Why is this so? Some robots move in a “bang-bang” manner, where they would move a joint (such
as an arm) at maximum speed and then suddenly stop. The first “bang” refers to suddenly moving
at maximum speed. The second “bang” refers to suddenly stopping.

However, robots are capable of more fluid motion. One method to define motions for a robot is
through keyframes. A keyframe is a set of joint positions of the robot. One keyframe could be the
robot in a standing position with its arms by its sides (Keyframe 1 in the figure below). Another
keyframe could be the robot in the standing position, with its arms above its head (Keyframe 2
below). In keyframe motion, the robot’s joints transition fluidly from one keyframe to the next. So,
for the two keyframes below, the robot would remain standing, and smoothly move its arms from
its sides to in the air above its head.

By defining a sequence of keyframes, you can describe complex motions of the robot. Keyframe
motion is a simple technique to design motions such as waving the robot’s hands, moving its feet,
and even dance routines. Keyframes have also been used in robot soccer. Robots are able to kick
the soccer ball in many directions - forward, to the sides, and even backwards!

4 - let’s dance
1 - keyframe motion

55

Balancing
nao

As you may have already learned from physics class, objects have a center of gravity. An object’s
center of gravity affects whether its pose is stable. For rigid bodies, the object is stable if the center
of gravity lies within the base of the object (see figure below). 	

For NAO, the same concept applies. When NAO is standing on both feet, the base lies between both
feet. When NAO is standing on one foot, the base lies only across that foot. NAO’s center of gravity
is approximately located in the torso. Because NAO can change its “shape” when different parts
of its body (arms, legs, head) move, the center of gravity will also shift. You can create complex
postures with NAO while keeping it balanced! 	

When adjusting the pose of NAO, check that the weight of NAO is resting on both feet. Sometimes,
even when both feet appear to be on the ground, all the weight of NAO is actually resting on a
single foot. Such a position is less stable, and can cause NAO’s motors to heat up more quickly.
Also, it becomes more difficult to keep NAO in balance, since the center of gravity must remain
within the bounds of that single foot.

One way to test the weight distribution is to try to move the foot while stiffness is on. If there is
weight resting on that foot, then it will be considerably more difficult to move the foot. The foot will
feel “heavier” than if no weight was resting on it.

4 - let’s dance
2 - balancing nao

56

01/
First, create a new timeline box and name it “Macarena”. A timeline box allow us to edit keyframes
on a timeline.

02/
Double click on the selected box. The timeline editor will appear, as shown below.

Basic task
Macarena hand
motion

Choregraphe allows us to record body
positions (keyframes) and combine them
on a timeline to make continuous motions.
We will learn how to create keyframes
by making NAO do the Macarena.

4 - let’s dance
3 - macarena Hand motion

57

The timeline is used to view and modify individual keyframes, which appear as small rectangular
black boxes on the timeline. The numbers on the timeline refer to the sequence of frames - each
number represents a duration of 10 milliseconds, so NAO will take 100 ms to reach frame 10, 150
ms to reach frame 15, and so on. This frame rate can be adjusted.

You can click on a keyframe to modify it. NAO interpolates its joints between keyframes. Interpolation
means that NAO will move its body smoothly from one keyframe to another automatically.

If you connect to NAO, you can view and save keyframes with the actual robot. If you connect to
a “local Naoqi”, you can view and save keyframes using the virtual 3D NAO on the right side of
Choregraphe.

03/
We want to start the dance in a standing
position. To do so, open the Pose Library
(click View >Pose Library in the top menu).
The Pose library will appear above the 3D NAO.

04/
Connect to NAO, and make sure
the joint stiffness is on. If not, press
the “Wake up” button with the symbol.
This will cause NAO to standup and
his joints to stiffen. While holding NAO
to prevent it from falling, click on the
Standinit in the Pose Library if NAO
is not standing. NAO will move to
a standing position.

4 - let’s dance
3 - macarena Hand motion

58

05/
We want to save this pose as a keyframe. Right click on frame 10 (100 ms) in the timeline, and
select Store joints in keyframe > Whole Body. Now at this keyframe, NAO will move to the Init
pose. The reason we stored this position at frame 10 is so NAO moves to the keyframe slowly,
from whatever position it was initially in. If we had stored the keyframe at frame 1 (10 ms),
NAO would jerk violently to this position and fall over.

06/
Click on a frame about 10 frames after your first keyframe. Here we will make the robot lift its right
arm with its palm down, the first move of the Macarena.

07/
Click the upper part of NAO’s right arm on the 3D view. The dialog below will appear.
Click “Stiffen Chain On/Off” to disable stiffness in the arm. The icon should turn green.

4 - let’s dance
3 - macarena Hand motion

59

08/
You can now move NAO’s arm freely. Raise the right arm so it is pointing straight ahead
with the palm down. Then, click the “Enslave chain on/off” button again to turn the stiffness
back on (the icon will turn back to red). The arm will remain raised.

09/
Now right click on the frame you are editing on the timeline (around frame 20).
Select Store joints in keyframe > Arms. The arm positions will be stored in that keyframe.

10/
Next, let’s check that the keyframes are working correctly. While holding onto the robot,
click on the first keyframe. The robot should lower its arm. Then click on the second keyframe.
The robot should raise its arm again. Now try clicking the small arrow to the left of the timeline.
Both keyframes should play in succession. This is how the keyframes will play with the proper
timing when you are finished.

4 - let’s dance
3 - macarena Hand motion

60

11/
Now that you’ve learned how to make keyframes, complete the rest of the keyframes for the Maca-
rena hand motions (do not do the turning or the hip shake yet). The steps are:

	 Raise right arm, palm down

	 Raise left arm, palm down

	 Put right palm up

	 Put left palm up

	 Cross right arm

	 Cross left arm

	 Put right arm on head

	 Put left arm on head

	 Put right arm on hip

	 Put left arm on hip

	 Put right arm on rear

	 Put left arm on rear

A few tips:

a. Save your work often.
b.Be sure to hold onto NAO when turning stiffness on or off. 					
c. If NAO says that its motors are hot, turn stiffness off for a few minutes to let it rest.
d. Be sure that NAO does not hit itself with its hands. You may need to add intermediate keyframes
to prevent this, especially for moving the hands from the hips to the rear in keyframes 11 and 12.

12/
(Optional) Once NAO can do the Macarena, try to make it dance faster.

01/

02/

03/

04/

05/

06/

07/

08/

09/

10/

11/

12/

4 - let’s dance
3 - macarena Hand motion

61

01/
Add the hip shake in the same way you added the arm motions: with additional keyframes.
This time you will need to move NAO’s legs. The figure below shows NAO performing
the Macarena hip shake.

Be sure to hold NAO tightly around its waist when disabling the leg stiffness. Do not hold
NAO by its limbs or head. Make NAO shift its hips left, right, and then back to the center.

When adjusting the position of the legs, be careful that NAO remains balanced. As a humanoid
robot with two legs, it is easy for NAO to fall over to its side if the legs are not positioned correctly.
Try out the position on yourself before adjusting the angles on NAO. It is recommended to remove
stiffness on one leg at a time, so that you can rest some weight on one leg while adjusting
the other. Check out the tutorial on balancing NAO above.

02/
Play the entire sequence to make sure it is stable and correct. If certain actions cause the robot to
fall, e.g., the hip motion, slowing it down may help; otherwise, the keyframe itself may have to be
modified.

You have completed the keyframe motion segment of the Macarena. Next, we will add the quarter
rotations.

Intermediate Task
Do the Macarena

4 - let’s dance
4 - do the macarena

We’ve completed the hand motions for the
Macarena. Now we will add the hip shake
and turns. The turns will involve learning
how to use loops in Choregraphe.

62

03/
Return to the workspace. In addition to your Macarena box, add a Stand Up, Sit Down,
Move To, and Counter box (found under Flow Control). Connect the boxes as shown below.	

04/
The Counter box repeats a sequence of boxes a set number of times. Click the wrench on
the Counter box to set the number of times to repeat. Change the “Final Value” to 3. The loop
maintains a counter, which begins at the initial value (0) and is incremented by the Step Value (1)
after each time the boxes in the loop are executed. The loop stops when the counter goes above
the final value (3). How many times will the loop execute?

05/
Configure the Move To box to do a quarter turn.

06/
Run the program by clicking the Play button. NAO should do the Macarena.

4 - let’s dance
4 - do the macarena

63

01/
Create a new box to nod yes, and open the Python source file by double-clicking the box.

02/
Copy the following source code into the onInput_onStart method.

The angleInterpolation method interpolates NAO’s joint angles. This function takes four
parameters: the names of the joints we are controlling (“HeadYaw” and “HeadPitch”), the final
angles (in radians) to set these two joints to, the time the joints should arrive in the final position
(0.5 seconds later for both), and whether the joint positions are absolute or relative (absolute is
True).

The parameter that varies is the list of angles we set the joints to. First the head faces straight
ahead, then upwards, then downwards, and finally straight ahead again. The HeadPitch joint
controls the up and down motion of the robot.

The for loop in Python has the same function as the Choregraphe counter box. It repeats the code
in the loop, incrementing the counter variable, i, from 0 to 1 to 2 for a total of three iterations
through the loop. This makes NAO nod three times.

Advanced Task 
Nodding Off

4 - let’s dance
5 - nodding off

Next, we’ll learn how to control joint angles
using Python. We’ll make two boxes, one to make
NAO nod yes and one to make it nod no. Each joint
of the robot can be controlled. For this exercise,
we will control the neck joints - the joints are
called HeadYaw (turns the head left and right) and
HeadPitch (turns the head up and down).

64

03/
Make a new box, and modify the code to have NAO shake its head left and right. You will want to
change the HeadYaw joint instead of the HeadPitch. So, when setting the angles in the for loop,
they should be [1.0, 0.0] and [-1.0, 0.0].

04/

(Optional) Change the speed of the nodding by adjusting times.

4 - let’s dance
5 - nodding off

65

Additional
Exercises

Make NAO wave its hand and say hello when someone says hello.
Hint: Use a Speech Recognition box to detect “hello”, and attach the output to
a keyframe motion and a Say box.

Implement your own dance, and compete in a class dance-off.

Use Python to control both head joints at once, and make NAO’s head move diagonally,
e.g., from the bottom-left to top-right.

Implement NAO Crystal Ball - Ask NAO a question, and have it randomly respond
by saying yes or no and shaking the head in the appropriate way.
Hint: Use a Speech Recognition box, attach both outputs to a Random Int box
(found in the Math section) with range 0 to 1, and attach that to a Switch box.

01/

02/

03/

04/

4 - let’s dance
 6 - additional exercices

66

Module
questions

What is a keyframe?

What does NAO do in between keyframes?

Where is NAO’s center of gravity?

Where must the center of gravity be for NAO to remain balanced?

When creating a box in Choregraphe, how do you make it a box where keyframes
can be edited?

Why is it not suggested to set a keyframe in the first frame of the timeline?

01/

02/

03/

04/

05/

06/

Basic

Intermediate

Advanced

07/

08/

09/

What types of motions will cause NAO to fall?

Explain the behavior of a Counter box in Choregraphe.

A Counter box has an initial value of 2, a final value of 10, and a step value of 2.
How many times does the loop execute?

10/

11/

12/

13/

Which joint is the HeadYaw joint and which is the HeadPitch?

What units are angles passed to the angleInterpolation function in?

How many radians is 45 degrees?

How many degrees is π/3 radians?

4 - let’s dance
7 - module questions

67

>> What sensors there are on NAO

>> How sensors on NAO relate to human 		
	 senses

>> What actuators are

>> How NAO knows its body pose

>> What an LED is

>> Where LEDs are located on NAO

>> How to control the LEDs of NAO

>> How to read sensor values and bumper 		
	 presses of NAO

>> What finite state machines are

>> How to design a robot behavior using a 		
	 finite state machine

>> How to implement a finite state machine

>> To understand binary numbers

>> To understand boolean values and bitwise-or

>> To store and retrieve state
** RST.11-12.3. Follow precisely a complex multistep

procedure when carrying out experiments, taking
measurements, or performing technical tasks; analyze the
specific results based on explanations in the text.

** RST.11-12.8. Evaluate the hypotheses, data, analysis, and
conclusions in a science or technical text, verifying the data
when possible and corroborating or challenging conclusions
with other sources of information.

** RST.11-12.9. Synthesize information from a range of
sources (e.g., texts, experiments, simulations) into a coherent
understanding of a process, phenomenon, or concept,
resolving conflicting information when possible.

** RST.11-12.10. By the end of grade 12, read and comprehend
science/technical texts in the grades 11–12 text complexity
band independently and proficiently.

Senses of NAO

Basic Task: Light Up

Finite State Machines

Intermediate Task: Switching States

Intermediate Task : Reading Raw Data
from the Sensors

Sensors and Actuators

Advanced Task: A Bright Idea

Advanced Task: Mirror, Mirror on the Wall

Additional Exercises

Module Questions

sense
and act5

01/

02/

03/

04/

05/

06/

07/

08/

09/

10/

learning contents
In this module, students will learn:

* Reference Common Core Stem standards

68

Humans have five senses - hearing, sight, touch, smell and taste. In addition, there are other
lesser known human senses. They include the sense of balance, the sense of temperature,
and kinesthetic sense. Kinesthetic sense is the ability to know where different parts of your body
are without relying on other senses. It is this kinesthetic sense that enables you to close your
eyes and touch parts of your body.

There are robots that are capable of performing similar functions to all the senses listed above.
The physical devices in robots that sense the environment are called sensors.

NAO has two cameras in its head. The cameras are vision sensors, and provide camera images
for NAO’s computer to process. This is different from the human “sense of sight” as sight would
include processing the image to understand what the robot sees.

NAO also has 4 microphones built into its head that it uses to listen to sounds around it.

In the earlier exercises, we used the
microphones to allow NAO to perform
speech recognition.

NAO does not have sensors that allow
it to smell or taste things. However, it
does have touch sensors on its head
and body. It has a tactile sensor on its
head that is split into three parts. Each
part of the head tactile sensor triggers
when touched. It also has a chest button
and two foot bumpers, which require an
actual press to trigger.

senses
of nao

5 - SENSE and act
1 - senses of nao

69

01/
Drag out a Bumpers box from the sensors category. The Bumpers box has two outputs
that trigger when the foot bumpers are pressed. The top output triggers on the left foot bumper,
and the bottom output triggers on the right foot bumper.

02/
Drag two Eyes LEDs boxes (found in the LEDs category). Connect them as shown below.
When the left bumper is triggered, the upper box will be executed. When the right bumper
is triggered, the lower box will be executed.

Basic Task
Light Up

5 - SENSE and act
2 - light up

NAO has foot bumpers which can be pressed,
and various LEDs that light up.
In this lesson, we will make NAO’s eye LEDs
change color when a foot bumper is pressed.

Triggered by left bumper

Triggered by right bumper

70

03/
Now we will set the eye colors. Double click on one of the Eyes LEDs boxes, and then click on the color.

04/
Choose any color from the color chooser that appears, but use a different color for each box.
You can click anywhere on the color area and the LED will be set to that color.

05/
Play the behavior. Pressing the foot bumpers should switch between the eye colors you selected.

5 - SENSE and act
2 - light up

71

A finite state machine, or FSM, is an abstraction commonly used in computer science and robotics.
A finite state machine includes states (a finite number of them) and transitions. We will use a running
example to explain these concepts.

Suppose that an exam is coming up, and you are at home preparing for it over the weekend.
Your behaviors (what you do during the weekend) can be described with a finite state machine.
Your state can be described using two features: how prepared you are for the exam (prepared or
unprepared), and how much energy you have (rested or tired). The goal is to ultimately be both
prepared and rested at the end of the weekend.

An FSM state must completely describe the situation without any external information. So, one
state would be (prepared and rested). Notice that we combined both features into a single state.
There will be four states in total - (prepared and rested), (prepared and tired), (unprepared and rested)
and (unprepared and tired). Each of the four states contains all the information about the situation.
Within a FSM, only one state is active at a time.

So in our example, say that we start off in the (unprepared and tired) state, since a week of classes
just ended (so we’re tired), and we haven’t had time to study for the exam yet. We want to end up in
(prepared and rested). To go from state to state, we have to define the transitions. Transitions move
us from one state to another, and can be triggered through actions or events. Intuitively, actions
are things that are performed by choice, and events are things that occur. We will use actions
in the example below, and discuss events at the end of this section.

Some actions we can take in our example are studying, playing, and sleeping. If we’re tired, then
sleeping should make us rested. Thus, the transitions from (prepared and tired) to (prepared and
rested), and from (unprepared and tired) to (unprepared and rested), are triggered by sleeping. Similarly,
the action studying will make us prepared for the exam but will tire us out. However, we can only
perform this action if we are rested. As such, there is a transition from (unprepared and rested) to
(prepared and tired) that is triggered by studying. The last action is playing, which can be performed
at any state. However, playing causes us to both become tired and forget what we’ve learned. So,
there are transitions from all the other states to (unprepared and tired) that are triggered by playing.

Finite State
Machines

5 - SENSE and act
3 - finite state machines

72

A FSM can be illustrated with a diagram, as shown below. Circles indicate states, and arrows
indicate transitions. The straight arrow that points to (unprepared and tired) indicates that it
is the initial state, or the state that we start out in.

Besides triggering transitions with actions, events can also be used. Events are things that happen,
that are typically caused by something external to the FSM. For example, an event could be the
teacher reducing the scope of the exam. This event might transition us from (unprepared and tired)
to (prepared and tired), since we already know the areas covered in the revised exam even without
studying.

5 - SENSE and act
3 - finite state machines

73

Similar to our finite state machine example in the section above, we have two features in the states.
The features are: whether the ear LEDs are on (on and off), and what color the eye LEDs are set to
(A or B). Thus, we have four states: (ears off and eyes as color A), (ears off and eyes as color B), (ears on
and eyes as color A), and (ears on and eyes as color B). Each press of a foot bumper is an event that will
trigger a transition to a different state.

01/
First, we’ll create one of the states. Add a custom flow diagram box named BumperState,
and add two outputs, “Left”, and “Right” to the box.

Intermediate Task
Switching States

5 -SENSE and act
4 - switching states

In this task, we will make the robot turn
its ear LEDs on and off by pressing
onefoot bumper, and toggle its eye colors
by pressing the other foot bumper. We will
implement this using a finite state machine.

74

02/
Double-click on the custom box, and a new flow diagram will show up. Add a Bumpers box,
an Eyes LED box, and a Ears LED box, and connect them as shown below. Ensure that the outputs
of the Bumpers box also link back to its X.

03/
Set the ears intensity to 100%, and set the eye color to a color of your choosing, which we will refer
to as color A. The state (ears on and eyes as color A) is now defined with these three boxes. The two
outputs, left and right, correspond to the events of the left foot bumper and right foot bumper being
pressed.

04/
Click on root to go back to the main flow diagram, then copy and paste these three boxes to create
four states, as shown below. Rename each box to correspond to the state it represents.

5 - SENSE and act
4 - switching states

755 - SENSE and act
4 - switching states

05/
Double-click each of the three new states, and edit the Ears LEDs and Eyes LEDs boxes so that
they match the state they are in. In the box “Ears off and eyes B”, the ear LEDs should be switched
to 0% and the eye LEDS should be set to color B, and so on for all of the states.

06/
You have created the four states. The states the boxes represent, clockwise from the top-left are:
(ears on and eyes as color A), (ears on and eyes as color B), (ears off and eyes as color B) and (ears off and
eyes as color A).

07/
Now add the transitions between them, as shown below. The left foot bumper event should switch
states such that the eyes change color, and the right foot bumper event should switch states so
that the ear LEDs switch on and off. Also, connect the start event to the Ears on and eyes A box -
this defines the initial state of our FSM.

Notice how the figure above corresponds to the diagram of a finite state machine in the earlier
section.

08/
Run the behavior. Press the bumpers to ensure that all the states work as intended.
Congratulations! You have implemented a finite state machine.

76

Intermediate Task
READING RAW DATA
FROM THE SENSORS

5 - SENSE and act
5 - READING RAW DATA FROM THE SENSORS

01/
Within Choregraphe on the pull-down menu click on the View > Memory Watcher option.
A window, or extra tab should appear in the bottom center of the main window with the title
“Memory Watcher”. This is where we can observe some of the sensors and inputs that are
stored in NAO’s memory.

02/
Click on the memory watcher tab.
The window should be blank with a short
string that reads “select memory keys
to watch?”. Double click on this value,
and a dialog window will pop up.

03/
When the dialog window pops up.
Check “View Devices” at the bottom,
and scroll down until you find “Device/SubDeviceList/
InertialSensor/AccX/Sensor/Value”, and check this
item. Also select “.../AccY/Sensor/Value” and “.../AccZ/
Sensor/Value”.
These are the accelerometer (A sensor that detects
acceleration and tilt) (see sensor section) readings along
the x, y and z axes. You will have to expand upon the sub-
folders until you get the proper selections, so go into
devices, subDeviceList, InertialSensor, etc… to check
the boxes as shown below. When you are done, Click
OK.

In this lab, we will learn how to observe
the raw sensor values from the robot
from within Choregraphe as well as
within the Monitor Desktop progam.

77

04/
The two values will be shown in the memory watcher window. At the bottom you can alter
the period of update. In addition, you can export this data to a .CSV file by clicking the “Start
Recording” button:

05/
We can also view and graph this data in the Monitor Desktop program that comes packaged
with the NAO. In the same folder as the Choreograph application, open up the Monitor Desktop
application.

06/
When it opens, choose the top “New configuration file” option.

07/
A window will popup displaying all the bits
of data we can monitor. In the bottom of
the window click the checkbox titled “view devices”.
Scroll down through the various selections
and choose the same two devices as we had
viewed before:
“Device/SubDeviceList/InertialSensor/AccX/Sensor/
Value”, and “.../AccY/Sensor/Value” and “.../AccZ/
Sensor/Value”:

08/
Save the selection as a sample .XML file,
and then the main viewing window will show.

5 - SENSE and act
5 - READING RAW DATA FROM THE SENSORS

78 5 - SENSE and act
5 - READING RAW DATA FROM THE SENSORS

09/
In the bottom left corner of the new window, check the boxes next to “Watch All” and “Graph All”.
This will graph the variables we selected. Finally, change the Subscription Mode to “Every nb ms”.
The default value in the dialog that pops up is fine. This is how often we refresh the sensor values in
the graph.

10/
Now the x, y, and z axis accelerometer readings will appear on the graph. Try turning NAO
in all directions. Determine what direction each of the three axes measure acceleration along.

795 - SENSE and act
5 - READING RAW DATA FROM THE SENSORS

11/
(Optional) Examine some of the other sensor readings. Some good ones to try are any of the
Device/SubDeviceList/JOINT/Position/Sensor/Value, which returns the measured joint angle, or
Device/SubDeviceList/InertialSensor/(AngleX, AngleY, AngleZ, GyrX, or GyrY)/Sensor/Value. Try to
figure out what these measure on your own.

80

Besides the sensors described earlier, NAO also has an internal gyroscope and accelerometer
inside its torso. The internal gyroscope and accelerometer function like the inner ear, which
provides a sense of balance for humans. The gyroscope measures angular velocity (how fast
the robot is turning). The accelerometer measures acceleration (which way gravity is pointing).
Together, the gyroscope and accelerometer can tell NAO if it is upright, lying on its back, or lying on
its front. Additionally, the two sensors let NAO know if it is falling down, so it can brace itself for a
fall with its arms.

Actuators on a robot refer to its joint motors. NAO has 21 different motors that can be controlled
separately. There are two motors on its head/neck, two for each shoulder, two for each elbow,
five for the hips, one for each knee, and two for each ankle. In Module 4, we moved many of these
motors to make NAO dance.

Each motor on NAO is coupled with a sensor, called an encoder. This sensor measures how far each
motor has turned. This is known as the motor’s angle of rotation. For example, the sensor
on the elbow joint is able to tell if the arm is straight or bent at an angle.

Using the angles of rotation of its joints, NAO is aware of the pose of its entire body. For example,
NAO can calculate how far the hand is from the head. It does so using a kinematic chain, which
essentially uses trigonometry to calculate relative positions of joints. In the figure below, we show
a two-link arm with an elbow joint. Using the length of the arms and the angle of the elbow,
we can calculate the position of the end-effector (the wrist) relative to the base (the shoulder).

Sensors and
Actuators

5 - sense and act
6 - sensors and actuators

81

Things are becoming unwieldy using Choregraphe boxes, so we’ll switch to using Python. Each
of the three head buttons will control one of the three color components: red, green and blue.
By combining these colors, we can make others. For example, red and blue together will make
purple, and red and green make yellow.

01/
First, add a new box to blend the lights.
Add three “bang” inputs, named “red”,
“green”, and “blue”.

02/
Add a Tactile Head box (in the Sensors category), and connect the boxes as shown below.
The three outputs of the Tactile Head box trigger when the front, middle and rear buttons
on the head are touched.

Advanced Task
A Bright Idea

Before, we used the foot bumpers to
toggle between four states. Now we’ll
use the three buttons on NAO’s head
to toggle between eight states.

5 - sense and act
7 - a bright idea

82

03/
Double-click on your custom box to edit the source code. Add the code shown below.

This script maintains a state consisting of three boolean variables: red, green, and blue. Boolean
variables can be either True or False. When a button is pressed, we toggle the corresponding
variable using the not operator, which performs negation. So, not True is False, and not
False is True.

We use the state variables to set the LED colors in the onInput_onStart method, which
continually loops and sets the eye colors. The colors are set using binary 24-bit RGB values. The
last eight bits are the blue component, the preceding eight bits are the green component, and
the eight bits before that are the red component. So, written in hexadecimal, 0xFF0000 is red,
0x00FF00 is green, and 0x0000FF is blue.

The vertical bar (|) is the bitwise-or operator. This takes two binary numbers, and for each bit, if
that bit is set in either number it is set in the output. For example, 100110 | 010100 = 11010. So the
sequence of if statements sets the corresponding color component if the red, green and blue
variables have been set to true.

04/
Now run the behavior. Experiment with all eight different color combinations.

05/
(Optional) Draw the finite state machine to describe the behavior we just created. How many states
are there? What are the transitions between the states?

5 - sense and act
7 - a bright idea

83

01/
Create a Bumpers box, and connect
it to a custom Mirror Joints box as
shown below. Hitting the left bumper
will start the behavior and hitting the
right bumper will stop it.

02/
Enter the Python code shown below
into your custom box.

The variable stiff refers to the
joints on the arm which will be doing
the mirroring (the right arm). The
variable unstiff refers to the joints
on the arm which will not be stiffened
(the left arm). The joints are relaxed
when the box begins running, and
returned to their initial stiffness when
the X is pressed and the box finishes.

The onInput_onStart method is
where the action happens. We have a
loop that continuously measures the

Advanced Task
Mirror, Mirror
on the Wall

Another sensor of NAO, often overlooked,
is its encoders. These sensors measure the angles
of all of NAO’s joints. In this task, we will
disable stiffness on one of NAO’s arms
so that it can be moved freely. Then, we will use
the encoders to read the positions of the arm
joints, and mirror these same positions on NAO’s
other arm. In this way, by moving one arm,
the other arm will follow.

5 - sense and act
8 - mirror, mirror on the wall

84

joint angles in the left arm and sets those same angles in the right arm. The getAngles method
gets the angles in the arm, and the setAngles method sets the angles in the other arm.

All of the joint angles except the shoulder pitch are negated because they are mirrored
on the opposite side of the body.

03/
Run the behavior. Press the foot bumper, and move the robot’s arm around.
Check that the other arm mirrors the same position.

5 - sense and act
8 - mirror, mirror on the walL

85

Additional
Exercises

Implement the eye blending task (A Bright Idea) using a finite state machine composed
of Choregraphe boxes. Compare the difficulty of adding additional states using boxes
versus Python code.

Building on the arm mirroring task, make it so tapping the head switches which arm
is being mirrored.

Hint: this will require an additional input and calls to setStiffnesses. Also, the
state of the behavior will now have two features: whether or not the behavior is active,
and which arm is being mirrored.

Start with the eye color blending task, and make it so you control the intensity of each
color using the foot bumpers (so don’t always use 0xFF as the component). Make one
bumper toggle between colors, and show the color component being modified
on the feet LEDs. When the other foot bumper is pressed, increment the current color
component by 0x10. Be sure to handle wrap-around properly: no color component
can exceed 0xFF.

Make the robot’s head track his own hand. Disable stiffness on the arms, and get
the hand and head positions with the ALMotion method getPosition. Using
setAngles, make NAO’s head look in the direction of the vector from the head
to the hands.
(Optional) Switch which hand NAO looks at when the head tactile sensor
is touched.

01/

02/

03/

04/

5 - sense and act
9 - additional exercices

86

Module
questions

Where are the NAO’s two cameras located?

How many microphones does NAO have and where are they?

What touch sensors does NAO possess?

01/

02/

03/

Basic 

Intermediate

ADVANCED

04/

05/

What are the two main components of a finite state machine?

Explain when the two outputs of the Bumpers box are triggered.

06/

07/

08/

09/

10/

11/

12/

13/

14/

15/

16/

Explain what the gyroscope and accelerometer measure.

Which three body sections can NAO’s motors be grouped into?

What do encoders measure?

Explain at a high level how NAO can know the position of its hand relative to its feet.

What three color components determine the color emitted from an LED?

What is a boolean variable?

The finite state machine with buttons toggling two binary variables had four states, and
the one with three binary variables had eight states. How many states does an FSM
with four binary variables that you can toggle have? Five binary variables? Ten binary
variables? N binary variables?

True or False: Everything on a digital computer is stored in binary.

How many different colors can be represented in the 24-bit RGB format?

Write the RGB value for the color purple in hexadecimal.

Compute 00110101 | 10011010 (binary), 0x7C | 0x5B (hexadecimal), and 118 | 201 (decimal).

5 - sense and act
10 - module questions

87

>> What multi-tasking is on a computer/robot

>> How an operating system performs
	 multi-tasking with a single core

>> How to use behavior layers in Choregraphe

>> How to create motions that execute
	 in parallel on NAO

>> How to create complex combinations
	 of actions using behavior layers

>> What odometry is

>> How to measure rotational odometry
	 on NAO

>> How to use measured odometry
	 to update actions on NAO

>> How measured odometry does not match
	 the actual motion perfectly

** RST.11-12.3. Follow precisely a complex multistep
procedure when carrying out experiments, taking
measurements, or performing technical tasks; analyze the
specific results based on explanations in the text.

** RST.11-12.8. Evaluate the hypotheses, data, analysis, and
conclusions in a science or technical text, verifying the data
when possible and corroborating or challenging conclusions
with other sources of information.

** RST.11-12.9. Synthesize information from a range of
sources (e.g., texts, experiments, simulations) into a coherent
understanding of a process, phenomenon, or concept,
resolving conflicting information when possible.

** RST.11-12.10. By the end of grade 12, read and comprehend
science/technical texts in the grades 11–12 text complexity
band independently and proficiently.

Multi-tasking

Behavior Layers in Choregraphe

Basic Task: Arms and Head

Intermediate Task: Completing the Robot
Dance

Advanced Task: Walking in Circles

Additional Exercises

Module Questions

do the
robot6

01/

02/

03/

04/

05/

06/

07/

learning contents
In this module, students will learn:

* Reference Common Core Stem standards

88

Multi-
Tasking

We do many things simultaneously in our day-to-day life. Chatting while walking, and eating while
watching television are common examples. In computer science, this process is known as multi-
tasking. A task is something that can be performed independently; multi-tasking is the process of
performing many tasks in parallel.

Within each computer (and robot), there is a CPU that handles the processing of tasks. CPU stands
for Central Processing Unit, and is where all the computational operations are processed in the
computer.

How is multi-tasking done on a CPU? A CPU core can only execute one sequence of instructions
at a time. One way to do multi-tasking is to use a multi-core CPU, so that multiple sequences of
instructions can be executed concurrently.

But NAO’s CPU has only a single core. Although only one sequence of program instructions can
be executed at a time, the operating system is able to maintain an illusion of true concurrency.
The different programs are split into threads. Threads are sequences of code to be executed.
The operating system switches which thread is currently executing on the CPU thousands of times
per second. This switching is faster than a human’s perception, and provides the illusion that all of
the threads are executing simultaneously.

In the figure below, the operating system rapidly switches between three threads. As such, it
appears as if all three threads are running in parallel. Notice that the amount of time each thread
runs is not constant, and threads do not always run in the same order. The operating system
decides when and how to switch between threads.

But we don’t need to worry about the underlying behavior of threads or the operating system
on NAO, since Choregraphe takes cares of this for us.

6 - do the robot
1 - multi-tasking

89

Behavior Layers
in Choregraphe

Behavior Layers are a feature in Choregraphe similar to threads. Each layer (or behavior) defines
a separate thread that will run on NAO. Some behaviors could be moving an arm, turning the head,
saying something, or turning the LEDs on and off.

You can define when each layer begins playing. For example, you could have NAO begin shaking its
head after 0.3 seconds. Concurrently, another behavior layer could make NAO move its arms after
0.5 seconds. Recall that in the Choregraphe timeline, each frame is 10 milliseconds, so 0.3 seconds
corresponds to 30 frames. In the figure below, there are 4 behavior layers. One layer shakes the
head after 0.3s; one moves the arms after 0.5s; one walks after 0.15s; the fourth flashes the LEDs
immediately.

In the previous module, you designed keyframe motions for the Macarena dance. In the Macarena,
the arms move first, followed by the legs, before repeating. In some other dances, the arms, legs
and head of the robot have to move simultaneously. While it is still possible to create a single
keyframe motion for such a dance, considering the repetitiveness of dance routines, behavior
layers are a perfect fit for these motions!

In the following exercises, we will show how to create behavior layers in Choregraphe to have NAO
do the robot dance.

6 - do the robot
2 - behaviour layers in choregraphe

90

Basic Task
Arms and Head

01/
In a new Choregraphe project, create a new
“Timeline” box.

02/
Connect a Motor on box, Stand Up box, an Init Pose
box, your new box, and a second Init Pose box, as
shown below. The robot will stand up, go to its initial
position, dance, and return to the initial position.
Recall that you can open the Pose Library by clicking
View > Pose library in the top menu bar.

6 - do the robot
3 - arms and head

In this lesson, we’ll learn how to use behavior layers
on NAO. Behavior layers allow NAO to perform multiple
tasks on NAO at the same time. This is known
 as multi-tasking. Let’s implement the robot dance,
and make NAO move its arms up and down and shake its
head at the same time.

91

03/
Double click on your new box timeline to edit it. Beneath the timeline and the word “Motion”,
you will see the words “Behavior layers” with a plus sign next to it. Click the plus sign to add
a new behavior layer. We will make this layer move the arms up and down.

04/
Select the new layer, and add a custom timeline box. Connect it to the initial play arrow,
and also connect it to itself. This causes the box to repeat forever.

6 - do the robot
3 - arms and head

92

05/
Now double click on the box to edit the timeline. Create two keyframes, as shown below. In the first
keyframe, one arm is raised and the other is lowered. In the second keyframe, switch which arm is
raised and lowered. Be sure to only save arm angles in these keyframes, since we will set the other
body angles in different layers.

06/
Currently, the arm motion will loop forever. Go back to editing the first custom box you made,
the one you added the behavior layer to.

6 - do the robot
3 - arms and head

93

07/
Right click on the timeline at some point at least a hundred frames in the future, and select
“Set end frame here.” A red flag will appear, and the entire behavior will stop at this point in time.

08/
Now we will add head shaking. Repeat the same procedure you used to add the arms. Add a new
behavior layer, add an infinitely looping custom timeline box, and set two keyframes in that box:
one with the head up and the other with the head down. Be sure to only store angles for the head
in the keyframes.

09/
Play the behavior. NAO should move its arms and shake its head, doing the robot dance.
If the motions appear unstable, try reducing the frame rate.

10/
(Optional) Try experimenting with the frequencies of the different layers to find a combination
that is visually pleasing.

6 - do the robot
3 - arms and head

94

Intermediate Task
Completing the
Robot Dance

01/
First, add leg motions. As in the previous exercise, add a new behavior layer, Legs, with two
keyframes. In one of the keyframes, make the robot squat, and in the second, make it stand up
straighter. Be sure to only store angles for the legs in these keyframes.

02/
Play the entire dance to make sure that the robot doesn’t fall over. If the robot does fall, try slowing
down the rate of the squat motion, or make the robot stand up less tall. Changing the frequency of
motion of the arm and head may also help. Make a dance that is stable and visually appealing.

03/
The beauty of using behavior layers is that you can change the speed of one aspect of the dance,
while keeping the rest constant. Try changing the frequency of motion of the arm so that it matches
the squats, and make the head bob at a different frequency.

6 - do the robot
4 - completing the robot dance

In the previous exercise, we finished
the basic robot dance. Now we will add
in leg motions, flashing lights, and speech.

95

04/
We have finished with the dance motions. Add another layer for NAO to speak. Place an infinitely
repeating Say box in the layer, and have the robot say something of your choosing, such as “Nao.”
You may also choose to add a Wait box to this layer, if you wish. Click the wrench on the Wait box to
set how long the delay should be (in seconds) between saying words.

05/
Now add the final behavior layer, which will control the LEDs. Place a bunch of loops with pairs
of LED boxes, one to turn the LEDs on and one to turn them off. See the image below. Set the ear
and eye LEDs, and use the Set LEDs boxes to set the feet, head and chest LEDs.

6 - do the robot
4 - completing the robot dance

96

06/
Click on the wrenches to set each box’s parameters. Choose an appropriate duration (in seconds),
and make the intensity 100% in the first box and 0% in the second box. This will make the lights
blink continuously. For the eye LEDs, you can double click on the boxes to select colors.

07/

(Optional) Add another layer to play music of your choosing.

08/
Now play the entire dance. It should include arm, head and leg motions, along with speech
and flashing lights.

6 - do the robot
4 - completing the robot dance

97

Advanced Task
Walking in Circles

01/
First, remove the behavior layers for controlling the arms and the legs.
NAO cannot do these motions while walking stably.

02/
Next, add a new behavior layer for the walk. Create a new box in this layer, connected to both the
start and end arrows. Double click on the box to edit the python code. We will be adding functions
into the code, bit by bit.

6 - do the robot
5 - walking in circles

We have finished the robot dance. Now, let’s try doing
something fancier, and have NAO do part of the robot
dance while walking in a circle. To do this, we will have
NAO use the omni-directional walk. We will record
the odometry information as it walks to determine when
we are finished.

98

03/
Before we begin editing and adding functions to the code, we need to import the relevant libraries.
Add the following lines before the class MyClass line.

04/
The first function we will edit is __init__.

__init__ is called only once (init stands for
initialization), before the behavior starts executing.
You have created a proxy to ALMotion in the past
within the onInput_onStart function. The main
difference here is that the variable name is self.
motionProxy instead of just motionProxy.
The addition of self. means that motionProxy
is now a member variable of the class - it can be
accessed in other functions.

05/
Next, we will create a new function,
simplifyAngle.

The while structure is a loop, similar to a for
loop. However, instead of iterating over some value,
it repeats until the condition in the loop evaluates
to false. So the first loop will continue subtracting
2π from theta (θ) until it is less than π. Similarly,
the second loop will continue adding 2π until θ
is more than -π. Thus, simplifyAngle
normalizes θ(in radians) to between -π and π.

6 - do the robot
5 - walking in circles

99

06/
We will now create another function, updateTheta.

The updateTheta function computes how much we have rotated so far (also known as odometry).
ALMotion’s function, getRobotPosition, returns the pose of the robot

(x, y, theta) in global coordinates based on where NAO first started. Since we are only
interested in the amount of rotation, we access the third element in the array (array indices start
from 0, so we retrieve element [2]).

Also, we only want the change in position since the Circle box started, not since the robot started,
and the second line maintains this information.

Finally, we return the amount of rotation since the Circle box started (theta), and the current
global angle of the robot (nextTheta) - that is used for future calculations of updateTheta.

07/
Lastly, we will edit the onInput_onStart function - this function is called when the box executes,
which we have done in previous exercises. We will use this function to have NAO walk in a complete
circle and then stop walking.

6 - do the robot
5 - walking in circles

100

The first line calls setWalkArmsEnable on ALMotion, which enables the swinging of the arms
as NAO walks. The swinging of the arms helps to keep NAO balanced.

The next three lines initialize variables. globalTheta stores the global angle of the robot when
the box starts executing; theta stores the rotation so far (0 since the robot hasn’t started walking
yet); rotationSpeed is a value from -1 to 1 that controls how quickly the robot will rotate.

The while loop continues executing until the odometry for theta exceeds , 2π meaning that the
circle is complete. Inside the loop, setWalkTargetVelocity is called to set the velocity of the
NAO’s walk. The first 3 parameters are velocity in the x (forward), y (sideways, to the left), and θ
(rotation, counter-clockwise) directions. Since we want the robot to walk in an arc, the walk velocity
is set to 0.5 in the forward direction and 0.25 in the rotational direction. This makes the robot walk
in an arc, where it walks forward and rotates at the same time.

The time.sleep function puts the thread to sleep, so the CPU can focus on other tasks. Without
this line, the robot would execute this loop as fast as possible, but this is unnecessary and a waste
of processing time.

Finally, we set the walk velocity back to zero. This stops the robot’s walk once the circle
is complete. Otherwise, the function would end but the robot would continue walking.

08/
The behavior will currently stop when it reaches the red flag you placed on the timeline previously.
Right click on the red flag, and select “Reset end frame.” Now the behavior will end when the robot
finishes walking in a circle.

09/
Run the behavior. The robot should walk in a circle and stop.

WARNING: do not hit the red X button to stop the behavior. Otherwise, the robot may continue
walking endlessly. If NAO does walk endlessly, create a new project with a single Walk Toward box,
and set the walk velocity in all directions (x, y and θ) to 0.

6 - do the robot
5 - walking in circles

101

10/
Measure the odometry error at the end of the behavior.
That is, how far does the robot’s final position differ from its initial position?

11/
Does the robot walk in a clockwise or counter-clockwise circle? Change the code so that the robot
walks in the opposite direction.

12/
Measure the radius of the circle the robot walked in. How can you change the radius of the circle
that NAO walks? Make NAO walk in circles of radii 0.25 m and 1 m.

13/
Look again at the simplifyAngle method. This algorithm works, but it is terribly inefficient.
What will happen if a very large number is passed to the function? How many times will the loop
repeat? In computer science, this algorithm is called O (θ) (“big-O of theta”), meaning that the
runtime increases linearly with θ. The simplifyAngle function can be written to be
O (1), meaning the runtime does not depend on θ and the algorithm always runs in constant time.
Rewrite the simplifyAngle algorithm to be O (1) . Your new function should not include any
loops.

Hint: Use int(number) to truncate (cut off the parts after the decimal) the number to an integer.
So, int(1.2) = 1, int(2.0) = 2, and int(1.9999) = 1.

6 - do the robot
5 - walking in circles

102

Additional
Exercises

Modify the robot dance so that NAO only bobs its head up and down each time you
touch the head sensors.
Hint: add a Tactile Head box that links to the Head keyframe in the behavior layer.

Make NAO walk in a square (building off the earlier exercise) and perform a different
combination of speech and/or motion as it traverses each edge of the square.

Make NAO walk in a figure eight while doing the robot dance (minus the arms).

Hint: Modify the advanced exercise to walk in a semicircle for the two ends of the
figure eight. For the central crossovers, linearly interpolate the θ in the walk velocity
from the turning radial velocity to zero as the angle changes from 0 to 45 degrees.
Once 45 degrees is reached, interpolate the radial velocity in the opposite direction
until 0 degrees is reached again.

01/

02/

03/

6 - do the robot
6 - additional exercices

103

Module
questions

What does CPU stand for?

Explain, at a high level, how a single processor performs multi-tasking.

01/

02/

Basic

Intermediate

ADVANCED

03/

04/

Explain the use for behavior layers.

Why does standing up straighter make the robot more susceptible to falling?

05/

06/

07/

08/

09/

10/

Why did we need to use the simplifyAngle method when computing the odometry?

Explain the use of the setWalkTargetVelocity function.

Why did we need to call time.sleep in the main loop?

Why do we have to set the walk velocity to zero at the end of the loop?

Using only division, multiplication, addition, subtraction, and integer truncation,
write a function that finds the remainder of x / y.
Note: this function, called modulus, is already implemented in python as %.
But do not use %.

Find the big-O runtime cost of the following functions:
 a. Searching for a name in a telephone book of n pages by:
	 i.Opening a page you bookmarked previously.
	 ii.Beginning at the first page, and checking each page in order for the name.
	 iii.Open the middle page, see if the name is to the left or the right, then open
	 the middle of the remaining half of the book, and repeat until the name is found.

 b. Enumerating every 5-card hand in a deck of n cards.

 c. Finding the correct n-bit key to open a lock by trying every possible key (this is called 	
a brute force attack in computer security).

 d. Sorting a list of numbers by finding the lowest number of the entire list, placing
it first, finding the next lowest number, placing it second, and so on. This is called
selection sort.

6 - do the robot
7 - module questions

104

105

>> How to make NAO detect faces
	 from Choregraphe

>> How to look in the direction of sounds

>> How to recognize and distinguish faces

>> How to scan with NAO’s head

>> What queues are

>> How to use queues / lists in python

>> How to deal with time in python
** RST.11-12.3. Follow precisely a complex multistep

procedure when carrying out experiments, taking
measurements, or performing technical tasks; analyze the
specific results based on explanations in the text.

** RST.11-12.8. Evaluate the hypotheses, data, analysis, and
conclusions in a science or technical text, verifying the data
when possible and corroborating or challenging conclusions
with other sources of information.

** RST.11-12.9. Synthesize information from a range of
sources (e.g., texts, experiments, simulations) into a coherent
understanding of a process, phenomenon, or concept,
resolving conflicting information when possible.

** RST.11-12.10. By the end of grade 12, read and
comprehend science/technical texts in the grades 11–12 text
complexity band independently and proficiently.

Basic Task: Seeing Face to Face

Intermediate Task: Recognizing Faces

Intermediate Task: Seeking Out Faces

Advanced Task: Remembering Faces

Additional Exercises

Module Questions

face
off7

01/

02/

03/

04/

05/

06/

learning contents
In this module, students will learn:

* Reference Common Core Stem standards

106

Basic Task
Seeing Face
to Face

01/
Link up a select camera box, a face detection box, a switch box, and a say box as shown below.
The select camera box will activate NAO’s top camera (in its forehead) instead of the camera in its
chin. The face detection box outputs the number of faces the robot sees. If this number is zero,
the robot does nothing. Otherwise, it executes the Say box.

02/
Set a message for the say box, such as “Hello, human.”

03/
Execute the behavior. Put your face in the line of sight of the robot’s camera (keep in mind that this
is quite narrow). The robot should greet you. If the robot doesn’t see you, try moving your head and/
or the robot’s head slightly until it does.

04/
Now add a Sound Tracker box (in the Trackers section) and link it to the start arrow in parallel
to the Select Camera box. Run the behavior again. Snap your fingers or make a sound, and NAO
should look in the direction of the sound.

7 - face off
1 - seeing face to face

In this module we’ll experiment
with NAO’s ability to detect human faces.
First, we will have NAO speak
when it sees a human face.

107

Intermediate Task
Recognizing Faces

01/
Set up the chain of Choregraphe boxes listed below. The final setup is shown after the list.

	 a. First, select the robot’s bumper to be pressed with a Bumpers box.
	 Connect both outputs to the X to terminate this box after a bumper is pressed.

	 b. Have Nao say “Please show me your face.”

	 c. Add a face to NAO’s face recognition database with a “Learn Face” box. This box takes a 	
	 string as input, the name to assign to the face. So after the say box, attach a “Text Edit” box 	
	 with the string “me”, and connect this box to an Add Face box. This will have NAO search for 	
	 a face in its field of view, and add this face to its database with the name “me”.

	 d. If the Learn Face box fails (the lower output triggers), go back to the Say box
	 and try again. If it succeeds, go on to a Face Recognition box.

	 e. Finally have him say the name of the face he recognizes by adding a Say box directly
	 connected from the output of the Face Recognition box to the Say box.

02/
Run the behavior. Press the foot bumpers while NAO is looking at your face, and it should recognize
you. If it does, the eyes will change color. Then let NAO see you and greet you.

7 - face off
2 - Recognizing Faces

In addition to detecting any human face,
NAO can recognize individual faces.
However, it must be trained first.

108

Intermediate Task
Seeking Out Faces

01/
Begin with the results of the first exercise, which detects faces.

02/
Add a new timeline box to do a head scan, as shown below.

03/
Add keyframes to the custom box to make the head move from side to side.

04/
Run the behavior and see if the robot can see faces. If not, you may need to slow down
the head motion.

NAO can see a face that happens to place itself
in front of its camera. Now we will make it scan
its head to look for faces.

7 - face off
3 - seeking out faces

1097 - face off
4 - remembering faces

Advanced Task
Remembering Faces

01/
Begin with the basic task. Double click the Sound Tracker Box on the workspace. You will see
a Sound Loc. box. Copy this box, and replace the Sound Tracker Box in the original workspace
with a Sound Loc. box.

02/
Create a new box, and add an input named add_position which takes two Number parameters
as shown below.

03/
Now connect the output of the sound Loc. box to your new boxes input.
The Sound Loc. box doesn’t move the robot’s head, but only outputs where a sound was heard.

Begin from the basic task, where NAO looks in the
direction of a noise. We will change this behavior to
make the robot remember the last two positions it has
heard a noise in, and to cycle through these positions.

110 7 - face off
4 - remembering faces

04/
Add the following code to the custom box.

In this code, we maintain self.positions as
a queue of head positions where we have heard
a sound recently. A queue is a list which is like a
line: the first thing to come in is the first thing to
go out. Only the two most recent head positions are
stored. The append method adds a new value to
the end of the list. In the if statement, len(self.
positions) returns the length of the list. If this is
greater than two, we shorten the list. Then self.
positions[1:] gets everything in the list except
the first (zeroth) element, from element one to the
end of the list. The variable self.pos indicates
which index in the list we are currently looking at,
and is incremented every two seconds.

The only other thing that should be new in this
example is the function time.time(). This returns
the number of seconds that have passed since
midnight on Jan. 1, 1970 (called “time since the
epoch”). We use this value to make sure we stay in
each state for at least two seconds, including states
we jump to after hearing a sound.

05/
Now run the behavior. See that the robot looks at sounds and oscillates between looking at the two
latest places it heard noises from.

06/
(Optional) As it stands now, we may jump to look at a new position, wait two seconds,
and then look at that new position again immediately. Modify the code so that we do not look at
the same position twice in a row.

1117 - face off
5 - additonal exercices

Additional
Exercises

When the robot sees a face, in addition to giving a greeting, make it wave
and flash its lights.

Make NAO recognize two different faces and greet the people differently.

While the robot is scanning for humans, make it stop scanning if it sees a face
and look at that person. To make it look in the correct direction, you may need
to reduce the scanning speed further.

01/

02/

03/

112 7 - face off
6 - module questions

Module
questions

What does the face box output?

Speculate as to why the robot does not always detect your face.

01/

02/

Basic

Intermediate 

ADVANCED 

03/

04/

What is the difference between face detection and recognition?

What does the face recognition box output?

05/ What areas will the search not see? How could you expand the robot’s search,
using both the head and by walking?

113

>> How images are stored on a computer/robot

>> What object recognition is

>> How object recognition is performed

>> What a logical-AND operation is

>> How to loop a behavior in Choregraphe
	 until a condition is met

>> How to parse strings to search for prefixes
** RST.11-12.3. Follow precisely a complex multistep

procedure when carrying out experiments, taking
measurements, or performing technical tasks; analyze the
specific results based on explanations in the text.

** RST.11-12.8. Evaluate the hypotheses, data, analysis, and
conclusions in a science or technical text, verifying the data
when possible and corroborating or challenging conclusions
with other sources of information.

** RST.11-12.9. Synthesize information from a range of
sources (e.g., texts, experiments, simulations) into a coherent
understanding of a process, phenomenon, or concept,
resolving conflicting information when possible.

** RST.11-12.10. By the end of grade 12, read and comprehend
science/technical texts in the grades 11–12 text complexity
band independently and proficiently.

Digital Images and Pixels

Computer Vision

Basic Task: NAOMark-Controlled Robot

Intermediate Task: Object Recognition

Advanced Task: Walk to an Object

Additional Exercises

Module Questions

object
recognition8

01/

02/

03/

04/

05/

06/

07/

learning contents
In this module, students will learn:

* Reference Common Core Stem standards

114

Digital Images
and Pixels

You may have used a digital camera and heard of phrases such as “10 megapixels”. What is a
megapixel? A megapixel is 1,000,000 pixels. What is a pixel then? ‘Pixel’ stands for picture element.
A pixel is the smallest part of an image or screen. In a digital image or photo, a pixel is the smallest
area that is a single color. The figure below is taken from the Wikimedia Commons. It shows an
image of a computer, with a zoomed-in section of the individual pixels.

Similarly, a digital photo is composed of pixels. Thus, photos taken by a “10 megapixel” camera
have 10 million pixels. Every digital camera has a sensor that converts the light coming in through
the lens into digital signals. These digital signals are then used to create the pixels of the image.

NAO has video cameras that do the same thing. However, NAO’s camera doesn’t take a single
image when a button is pressed. Instead, it takes a video - a continuous stream of images.
NAO’s cameras are capable of a resolution of 1288 pixels by 968 pixels, at a frame rate of 30 frames
per second (fps).

The resolution of an image refers to how many pixels there are along the length and breadth
of the image. So, for NAO’s camera, the resolution is 1288 by 968. This means that the images
are 640 pixels wide, and 968 pixels high. The frame rate refers to how many images are taken
per second. So, the frame rate of 30 fps means that the camera takes 30 images every second.

8 - OBJECT recognition
1 - digital images and pixels

115

Computer Vision

From a single digital image, we humans are able to identify the objects within it. For example, when
presented with a picture of a beach, we can readily say that it shows a beach. We can also point out
the sand, sea, clouds, and trees in the image.

 For a computer, this task, known as computer vision, is not easy at all. Firstly, the image is entirely
made up of pixels. This means that all the computer has are a series of numbers that represent the
colors of each pixel. Given an image of a cup on a table, it is hard for the computer to tell that one
pixel is part of the cup while the next pixel is the table. Also, the computer must have some concept
of “cup” and “table” in its memory. As humans, we have a large memory, or database, of objects
that we know and have interacted with. This database helps us to identify objects just from a quick,
small view of it.

 In computer vision, the algorithm first finds features in the image. Features are distinguishing
parts of an image that aid the computer vision algorithm in deciding what object is present. Typical
features include edges and texture. Edges occur because objects tend to look different from the
background. Some objects tend to have uniform textures. Another feature that usually comes to
mind is color. However, it is difficult for an algorithm to use color as a feature. This is because the
same color looks very different under various lighting conditions. In most situations, our eyes are
capable of adjusting for the color of the light source so we can tell if an object is red, but computers
are unable to do so robustly.

 Another aspect of features used in computer vision is that a feature should be scale-invariant.
Invariant means “never changing”. So, a scale-invariant feature means that the same feature is
detected regardless of how big or how small the object is in the image. A common feature set used
in computer vision is the scale-invariant feature transform (SIFT) feature set. We will not describe
the details of what SIFT features are. The main idea is that these features are extracted from an
image. They are then used to detect the objects in the image. One method is to have a database of
images that are labeled. Given a new image, the features of the new image are compared to the
features of images in the database. The object in the database with the closest features is then
chosen. For example, suppose there is an image of a cup with SIFT features A, B and C. If the new
image also has SIFT features A, B and C, then it is likely that the new image is an image of a cup.

8 - OBJECT recognition
2 - computer vision

116

Basic Task
NAOMark-
Controlled Robot

Choregraphe comes with an automated algorithm that detects these NAOMarks.
The program returns their identification number, which is located on the top left of each card.
The algorithm detects the unique shape of the NAOMarks, and divides them up based
on the sizes of the white and blue regions within the mark.

We will be using these NAOMarks as input to control NAO’s actions. In the earlier modules,
we created a voice-controlled robot. In this exercise, we will build a robot that walks based on visual cues.

8 - OBJECT recognition
3 - naomark-controlled robot

In this exercise, we will be using
NAO to perform computer vision.
In your DVD, you will find a file
containing NAOMarks. NAOMarks are
circular designs that look like
the figure below:

117

01/
Create a NAOMark box from the Vision category, and connect it as shown below.

The NAOMark box has two outputs. The first (middle box on the right) returns the identification
number of the NAOMark detected (if any). The second (bottom-right box) triggers if no NAOMarks
are detected.

02/
Try running the behavior as is. Print out 3 NAOMarks, and show it to the robot. You should see the
NAOMark number appear in the middle-right box of the NAOMark box in Choregraphe.

Hint: you may notice that other numbers sometimes get detected as well. For example, NAOMark
64 may be detected as 64, and sometimes 79 or 127. Make sure the three NAOMarks you choose
look different from one another. So, if you picked NAOMark 1, 2 and 3, then ensure that NAOMark 1
does not ever get detected as 2 or 3.

03/
Connect a Switch Case box to the output of the NAOMark box. Within the Switch Case box, enter
the identification numbers of the three NAOMarks that you chose. In the figure below, we used
NAOMarks 64, 68 and 80.

8 - OBJECT recognition
3 - naomark-controlled robot

118

04/
When a particular NAOMark is detected, we want the robot to perform a unique action.
Drag three Walk To boxes and connect them to the Switch Case box, as shown below.

05/
For each of the three Walk To boxes, enter different values for x, y and theta,
so that the actions taken for each NAOMark is unique.

06/
Run the behavior. Show the different NAOMarks to the robot, and ensure that it performs
the correct action for each mark.

8 - OBJECT recognition
3 - naomark-controlled robot

119

Intermediate Task
Object Recognition

01/
First, we need to create a library of known objects for NAO. To do so, connect to the robot
in Choregraphe, and then click View > Video Monitor in the top menu bar. The window below
should pop up. Click the New Vision Recognition Database button if it is not grayed out.

02/
Click the play button in the Video Monitor (not the “play behavior” button in the Choregraphe
toolbar, although it looks the same), and you should see a video stream from NAO. Move your hand
in front of NAO’s face and ensure that you are streaming the video correctly. NAO has two cameras,
so check both of them to see which camera NAO is using. You can switch the cameras using
the Select Camera box under the Vision category.

8 - OBJECT recognition
4 - OBJECT recognition

In the previous exercise, we detected NAOMarks with an
algorithm in-built into Choregraphe. In this exercise,
we will explore defining and detecting general images.

120

03/
Now, place the object you want NAO to learn in front of the camera, and click the learn button.
A countdown will appear on the Video Monitor, after which a single image will be paused
and shown in the window.
Hint: For this exercise, we recommend using a flat object with pictures.
Other alternatives could be the cover of a book, or a page from the newspaper.

04/
You can now click on the border of the object to trace its outline. To end the trace, click on the first point
of the border again. The features of the object will then be extracted within this outline and saved.

8 - OBJECT recognition
4 - OBJECT recognition

121

05/
Enter a name for the object, and the features will be associated with this object in the local
Choregraphe database.

06/
If you want to learn more objects, you can repeat steps 2 to 5.

07/
Before we can do object recognition on NAO, we need to send it the database of objects that we
have created. Click the right-most button to send current vision recognition database to NAO.

8 - OBJECT recognition
4 - OBJECT recognition

122

08/
Now that NAO has a database of objects and their features, we can perform object recognition
in Choregraphe. To do so, drag a Vision Reco box under the Vision category.

09/
Start the behavior, and place the object in NAO’s camera view. Ensure that the object gets detected,
and the Vision Reco box returns the object’s name in its output box. If the object does not get
detected, repeat the steps above to create a new database and send it to NAO.

8 - OBJECT recognition
4 - OBJECT recognition

123

10/
We will now use the Vision Reco box to have NAO walk until it sees an object that it recognizes,
and is touched on the head. We will use a Move Toward box, from the Motions category,
and a Tactile Head box from the Sensors category.

11/
We want NAO to stop walking when it sees an object it recognizes and a head sensor is touched.
To do so, add a Switch Case box to check the output of Vision Reco box, and the Wait For Signals
box from the Flow Control category. Connect the output of the Switch Case box to one of the inputs
of the Wait For Signals box, and connect the outputs of the Tactile Head box to the other input
of the Wait For Signals box.

The Wait for Signals box waits for both of its inputs before triggering its output - it performs a
logical-AND operation. A logical-AND checks that all its inputs are true, e.g., true AND true is true,
but true AND false is false, false AND false is false.

8 - OBJECT recognition
4 - OBJECT recognition

124

12/
When the Wait for Signals box triggers, it means that the desired object was detected, and the head
sensor was touched. In this case, we want the robot to stop walking. To do so, drag another Move
Toward box, and connect it to the output of the Wait for Signals box. Set the parameters of the Move
Toward box to have x, y and theta set to 0. Also, connect the output of the Wait for Signals box to
stop the previous Move Toward box.

13/
Run the behavior. Check that NAO starts walking, and stops only when the object is detected,
and the head sensor is touched.

8 - OBJECT recognition
4 - OBJECT recognition

1258 - OBJECT recognition
5 - WALK TO AN OBJECT

ADVANCED Task
WALK TO AN OBJECT

01/
For this exercise, we will use a complex object such as a book or a brochure, that either can change
its shape (like opening a book) or has a complex shape (like a mug).
Hint: use an object with multiple colors or a complex texture.

02/
Create a new vision recognition database in Choregraphe (refer to step 1 of the previous exercise).

03/
Repeat steps 2-5 of the previous exercise to save different images of the object. However, besides
giving the object the same name, also fill in the field on the page of the book, or side of the object.

We made NAO perform object recognition on a flat
object like a DVD sleeve in the previous exercise.
However, many objects in our environment have
complex shapes, and look different from different
perspectives. For example, a mug looks different
when you look at it from the side compared to looking
at it from above. A book looks different depending
on which page it is open to.

126

04/
Drag out a Vision Reco box, and run the behavior. Ensure that the object can be detected
from different distances and angles.

05/
Create a custom Python box and connect it to the output of the Vision Reco box.
Change the input type of the Python box to be String, instead of “Bang”.

8 - OBJECT recognition
5 - WALK TO AN OBJECT

1278 - OBJECT recognition
5 - WALK TO AN OBJECT

06/
Connect the outputs of the Vision Reco box to the Python box, such that onStart is triggered
when an object is detected, and the x is triggered when no object is detected.

07/
When the object is detected, the Vision Reco box returns the name of the object as well as the side/
page. For example, page 1 of the book would be returned as a string “book 1”, and page 2 would be
“book 2”. For the purposes of this exercise, we don’t distinguish between the pages and sides and
only care that the book was detected. However, we do care that the book was detected and not the
mug, if there are multiple objects in the database.

To do so, we can check that the input starts with the name of the object, e.g., “book 1” and “book 2”
both start with “book”.

08/
Enter the following Python code into the custom Python box. The startswith function, as its name
suggests, return true if the string does start with the prefix you provide. In the example below,

we check that the string p starts with the prefix “Brochure”. So, inputs such as “Brochure 1”,
“Brochure 2”, “Brochure front” would be accepted, but “Mug top” and “Mug side” would not.

Thus, when the object is detected, we use the motionProxy to walk the robot forward 10cm.
Otherwise, the behavior doesn’t do anything.

128

09/
Run the behavior. Place the object within the camera view of NAO, and it should walk towards it.
Once NAO is close to the object, it will be outside the camera’s field-of-view and not be seen
by NAO. As such, it will not be detected and NAO will no longer walk forward.

Warning: be careful that NAO does not walk over the object. It may cause damage to the object,
NAO, or both.

8 - OBJECT recognition
5 - WALK TO AN OBJECT

1298 - OBJECT recognition
6 - additonal exercices

Additional
Exercises

Use one NAOMark to start NAO turning in one direction, and another NAOMark to stop
its motion. This will allow you to use visual landmarks to direct NAO’s motions.

Use Python to do the same behavior as above. You will still have to use the NAOMark
box to detect the NAOMarks.

Use the Switch Case box and enumerate all the sides/pages of the 3D object of the
Advanced Task, in order to have NAO walk to an object, without using Python.

Using Python, have NAO search for the object with its head when it doesn’t detect
an object. Once it sees the object, use the HeadYaw angles of the head to determine
which direction to turn and walk. For example, if head is pointed to the left,
then NAO should turn to the left and then walk forward.

01/

02/

03/

04/

130

Module
questions

What is a pixel?

What does a NAOMark box in Choregraphe do?

01/

02/

Basic

Intermediate

ADVANCED

03/

04/

05/

How does object recognition work?

Is color a good feature to be used in computer vision? Why or why not?

When learning a complex object, why do we need to provide many different images of the object?

06/

07/

How do we use Python to determine if a string starts with a prefix, e.g., how do we
check that a variable called mystr starts with “Abc”?

In the Advanced Task, why does the robot stop walking once it reaches the object?

8 - OBJECT recognition
7 - module questions

131

Human-Robot Interaction

Basic Task: Greetings

Intermediate Task: Peek-a-boo

Advanced Task: Storytelling

Additional Exercises

Module Questions

>> What human-robot interaction is

>> Why human-robot interaction is important

>> How to make robots interact with humans

>> How to do cooperative motions
	 (hand shakes and high fives) with humans

>> To act out a play on NAOs.

>> To share the results with children

games
and stories9

01/

02/

03/

04/

05/

06/

learning contents
In this module, students will learn:

132

Human-Robot
Interaction

Robots can do many things on their own. As humans, we want to build robots that interact
with us. You may already interact with robots every day. Some cars can parallel park themselves.
Other robots assemble the manufactured goods you use.

Human-robot interaction studies the interactions between humans and robots. This field combines
robotics and psychology. It seeks to answer a number of questions. How can humans better control
robots? How can humans and robots work together? And, in general, how can we improve the
human experience and make robots more effective tools?

In this module, we will program NAO to interact with humans. NAO appeals to humans because
of its humanoid shape. It is also designed to look “cute”. By the end of this lesson, you will have
completed three tasks in which the robot interacts with humans. You will make Nao communicate
with hand motions, including shaking hands, giving a high five, and waving goodbye. You will
program NAO to play peek-a-boo with children. Finally, you will re-enact a scene from a play. After
finishing this module, show off the results to children, adults or fellow students outside your class!

9 - games and stories
1 - human-robot interaction

133 9 - games and stories
2 - greetings

Basic Task
Greetings

01/
Create a new Choregraphe project, with three new Timeline boxes for keyframe motions.

02/
You should be well-versed by now at creating keyframe motions. For one keyframe motion,
make NAO do a hand shaking motion. For the second, make NAO give a high five. For the third,
make NAO wave goodbye (you can use the Hello motion box).

03/
Now add a Speech Recognition box and a Switch Case box. Set the word list for the speech
recognition box to be “hello;high five;goodbye”, and set these three words in the Switch Case box.
Connect these two boxes to the motion boxes as shown below.

In this module, we’ll focus on how robots
can interact with humans. We’ll teach
Nao to shake hands, give a high five,
and wave goodbye.

134

04/
Now add Say boxes, one for each action, connected to the same output of the Switch Case box.
For each Say box, make the robot say a message related to the associated action.

With this setup, the Speech Recognition box continues running while the robot speaks. If our
greeting when we shake hands includes the word “hello”, the robot will recognize itself as having
said “hello” and continue shaking hands forever. To fix this, connect the output of the speech
recognition box to the red X on the same box. Then connect each of the motion boxes to the speech
recognition box to make the behavior run continuously. The final result should be similar to that
shown below.

05/
Now run the behavior, and try saying each phrase on the word list.

9 - games and stories
2 - greetings

135

Intermediate Task
Peek-a-boo

01/
Create a new Choregraphe project, with two new Timeline boxes for keyframe motions.

02/
For one keyframe motion, make NAO hide his face with his hands.
For the other, make him put his hands at his side. Be sure to make these gradual transitions.

03/
Add a speech recognition box, which recognizes the phrases “peek a boo” and “I see you”.
Also add a face recognition box connected to a switch case box, which does nothing on receiving 0
and continues on in the default case. The robot should play the game in a cycle.

04/
The order of actions should be as follows. The final result is shown below.

 a. Hide NAO’s face with its hands.
 b. Say “Where am I?”
 c. Recognize the speech. This box should link to its own X on completion.
 d. Remove the hands from the robot’s face.
 e. Say “You found me! Now you hide.”
 f. Recognize a face. Again, link this box to its own X on completion.
 g. Say “Peek a boo! I see you!” after detecting a face.
 h. Hide NAO’s face with its hands again and repeat.

05/
Try playing
peek-a-boo
with NAO.

 9 - games and stories
3 - peek-a-boo

Next, we’ll make NAO play
the children’s game “Peek-a-boo”.

136

Advanced Task
Storytelling

Choose either a short scene or a skit that interests you. Use a combination of voices and motions
on the robot. You have already learned all the skills needed to do this exercise, so no step-by-step
instructions will be provided. A few hints and suggestions:

01/
If the scene has multiple characters, try changing the voice parameters and head lights to
differentiate between them.

02/
Use expressive hand gestures and move NAO’s head.

03/
Use a variety of lights.

04/
Try including sound effects.

05/
Use the “Wait for Signals” box to wait for multiple boxes to finish (i.e., speech and motion)
before beginning the next action.

06/
Use “Wait” boxes to insert dramatic pauses into the script.

07/
Be creative!

9 - games and stories
4 - storytelling

Next, we’ll make NAO either
tell a story or act out a scene
from a play.

137 9 - games and stories
5 - additional exercices

Additional
Exercises

Make NAO play rock paper scissors. Think carefully about how to modify the hand
gestures for NAO’s hand and arm.

Divide the class into several groups, and make each group responsible for delivering
the lines of a character in a specific scene of a play. Combine the groups’ results to
enact the play. If available, use multiple robots.

Bring NAOs to an elementary school, and show the class projects to the children
at the school.

01/

02/

03/

138

Module
questions

Describe human-robot interaction.

Give an example of a robot that interacts with people.

Give a reason why humans find NAO an appealing robot.

Discuss how multiple robots would need to cooperate to enact a play together.

01/

02/

03/

04/

9 - games and stories
6 - module questions

139

>> How to solve mazes

>> What the dead-end filling algorithm
	 for solving a maze is

>> How to solve a maze without a map using 	
	 the wall-following algorithm

>> How to find the shortest path from the start 	
	 to the goal in a maze using the breadth-first 	
	 search algorithm

>> What a visual cue is

>> How to use visual cues to instruct a robot
	 to solve a maze

>> How to use cues of multiple types to solve
	 a maze

>> How to implement a maze-solving
	 algorithm with Choregraphe

>> How to implement a maze-solving
	 algorithm in Python.

Solving Mazes with a Map

Basic Task: Maze Solving with Visual Cues

Intermediate Task: Maze Solving with
Multiple Cues

Completing Mazes without a Map

Advanced Task: The Right Way to Maze
Solving

Finding the Shortest Path in a Maze

Additional Exercises

Module Questions

finding
your way10

01/

02/

03/

04/

05/

06/

07/

08/

learning contents
In this module, students will learn:

140

Solving Mazes

Many of us have had experience solving mazes on paper. The figure below, taken from the
Wikimedia Commons, is one such maze. There is a defined start and goal, and we want to find
a path from the start to the end. However, solving a maze on paper is somewhat different from
solving a maze while you are in it. If you have walked in a hedge maze, you should know what it is
like. For one thing, there is no map of the entire maze, so you don’t know beforehand if taking a left
or right turn is the correct thing to do. Furthermore, it is difficult to keep track of where you have
been in the maze, which can cause you to go around in circles.

There are many algorithms to help solve mazes. There are algorithms for cases where you know
the map of the maze (such as when you do it on paper), and when you don’t (like when you are
walking in a hedge maze). We will explore a number of these algorithms in this module, as we go
through the exercises.

10 - finding your way
1 - solving mazes

141

Dead-End Filling

One algorithm to solve a maze when you have the map is called dead-end filling. Essentially,
the idea is to find dead ends in the maze, and fill it up. This process repeats until no more dead
ends exist. The remaining squares then form the solution from the start to the goal. In the figure
to the left, the dead ends of the maze are shown with dots, and on the right, those dead ends have
been filled, creating new dead ends which are shown with new dots. When the process of filling
all the dead ends are completed, the resulting maze is shown at the bottom, which corresponds
to the solution path.

 10 - finding your way
1 - solving mazes

142

basic Task
Maze Solving
with visual Cues

To do so, we can make use of the human brain to solve the maze. We will then use visual cues to
help NAO navigate the maze. Cues are objects or events that provide information and instruction
for NAO. Visual cues are cues that are detected by vision, such as a NAOMark.

01/
With the map of the maze, find a path from the start position to the goal. The figure below shows
a maze, and the path. Do this on the maze map that you have been provided with. You can use the
dead-end filling algorithm described above.

02/
In addition to the map of the maze, you should have been given a number of NAOMarks.
You can place these visual cues in the maze to instruct NAO what to do. For example,
In the figure below, NAOMarks are placed at every junction that NAO should make a left turn.

10 - finding your way
2 - maze solving with visual cues

In this exercise, NAO will be
placed in a maze, and the goal
is for NAO to walk from the start
to the end.

143

03/
Similarly, you can use a different set of NAOMarks to instruct NAO to make right turns,
as shown below.

04/
With both sets of NAOMarks in place, we can now program NAO to complete the maze. Essentially,
NAO should walk forward if it doesn’t see a NAOMark. When a NAOMark is detected, it should turn
90 degrees to the left or to the right, depending on the identification number of the NAOMark.

05/
However, to see the NAOMark and make a turn, NAO should make use of its bottom camera,
instead of the top camera. To do so, use a Select Camera box from the Vision category, and connect
the bottom-left input to select the bottom camera.

 10 - finding your way
2 - maze solving with visual cues

144

06/
When NAO has no NAOMarks in sight, it should continue walking forwards. Thus, we can use
a Timer box and Walk To box to make NAO walk forward every few seconds. The Timer box
(in the Flow Control > Time category) triggers periodically, and for this exercise, we will set the
period to 5 seconds. The Move To box should be set to a small distance, such as 0.04m forward.

07/
When the Move To box completes, we want NAO to perform object recognition, and check if a
NAOMark is visible. To do so, we can use a NAOMark box. Notice how the output of the NAOMark
box links back to its itself. This ensures that a NAOMark is detected only once if it exists.

10 - finding your way
2 - maze solving with visual cues

145

08/
Now, when a NAOMark is detected, we need to check that which NAOMark was detected. If the
identification number matches the mark we chose to do a left turn, a Walk To box performs the
turn. Similarly, another Walk To box performs the right turn when the expected mark is detected.
In the figure below, NAOMark 68 indicates a left turn, and NAOMark 84 indicates a right turn.

 10 - finding your way
2 - maze solving with visual cues

146

09/
There is still the possibility of the Timer box triggering while the robot is performing the turn.
To prevent this from happening, we can link the output of the Switch Case box to the x of the Timer,
to stop the Timer from triggering. In addition, we connect the output of the Move To boxes that turn
NAO to the start of the Timer box, so that the robot resumes walking forward.

10/
Run the behavior. The robot should walk forward every 5 seconds. When it sees NAOMark 68,
it makes a left turn and then continues walking forward, and it makes a right turn and then
walks forward when it sees NAOMark 84.

11/
Now, by placing NAOMarks in the right places, you can give visual cues to NAO in order to complete
the maze!

10 - finding your way
2 - maze solving with visual cues

147

Intermediate Task
Maze Solving with
Multiple Cues

Besides NAOMarks, object recognition can also be used as visual cues. Together, they provide
actions for NAO. We have previously covered learning object features into the object recognition
library on NAO and using the Object Reco box to control NAO.

Besides visual cues, you can also make use of the other sensors on NAO, such as the touch
sensors on its head, and the foot bumpers on its feet. For example, touching the head could make
NAO walk forward a short distance, and hitting a foot bumper will make NAO turn 90 degrees
in that direction.

Audio cues can also be used. You can tell NAO to “turn left”, “turn right” and “walk forward”.

In this exercise, like the exercise above, you will be given the map of the maze. You can solve
the maze on paper before working on NAO. NAO does not need to solve the maze automatically.
Instead, it uses cues to decide what actions to take.

You can provide any sort of cue to NAO, such as visual, sensory or audio cues.
The score of a team will be calculated as follows:

	 • +100 if NAO reaches the goal position by navigating through the maze
	 • +30 for each new type of cue, e.g.,
	 • NAOMarks
	 • visual objects
	 • button presses
	 • speech recognition
	 • face recognition
	 • +1 for every second under 5 minutes

For example, a team that only uses NAOMarks to complete the task in 4 minutes will have
a score of 100 + 30 + 60 = 190. Another team that uses all 5 types of cues, and completes the maze
in 4 minutes and 35 seconds will achieve 100 + 5 * 30 + 25 = 280.

 As such, there is an incentive to develop an algorithm that is fast to execute and is less susceptible
to errors.

 10 - finding your way
3 - maze solving with multiple cues

148

Completing Mazes
without a Map

We will now explore an algorithm that can be used when the map of the maze is unknown.
For example, a person physically walking in a hedge maze can use it. Similarly, the algorithm
can be used by a robot in a maze. The algorithm has a straightforward concept - as you walk in
the maze, keep one of your hands, say the right hand, in contact with a wall of the maze at all
times. Thus, when there is a turn to the right, in order to maintain contact with the right turn,
the algorithm will take the right turn. In this fashion, the algorithm is guaranteed to find the exit
provided a condition is met. The condition is that all the walls of the maze are connected together
or to the boundary of the maze. This is also known as a simply connected maze.

In the figures below, the algorithm will be performing the right-hand-rule, i.e., keeping the right side
in contact with a wall. The parts of the walls that have been in contact are highlighted in blue.

In this first figure, the algorithm follows the right wall, up until the first junction.

10 - finding your way
4 - Completing Mazes without a Map

149

Since the right wall makes a turn, the algorithm will continue following the right wall and so it
turns right. After making the first right turn, the algorithm follows the wall again to reach a new
junction. Here, the algorithm continues to follow the wall, and go around the junction.

 10 - finding your way
4 - Completing Mazes without a Map

150

The algorithm continues on and follows the right wall whenever it makes a turn.
The following four figures show the state of the algorithm as it keeps going.

10 - finding your way
4 - Completing Mazes without a Map

151

Eventually, the algorithm reaches the goal position and completes.

As you can see from the figure above, the algorithm takes a very long path from the start to
the goal. However, while there are other algorithms that work when the map of the maze is not
available, the wall-following algorithm is one of the easiest to implement.

 10 - finding your way
4 - Completing Mazes without a Map

152

In the previous two tasks, you were given the map of the maze, and gave cues for NAO to walk
from the start position to the goal. In this exercise, you will not be given the map of the maze.
Instead, NAO has to explore the maze and find its way to the goal automatically.

We will be using the Wall Following algorithm in order to do this, and we will use
 the right-hand-rule. The algorithm can be performed as follows:

 If there is no wall to the right, turn 90 degrees to the right and then walk forward.

 If there is a wall to the right, but no wall in front, then walk forward.

 If there is a wall to the right, and a wall in front, then turn 90 degrees to the left.

In order for the algorithm to function, NAO needs to know the state of the environment around it,
i.e., whether there are walls to its right and/or in front of it. The state can be detected through a
variety of methods, such as visual cues, audio, and sensors. We will leave it to you to decide what
sort of cues you want to use for this module.

In the instructions below, we will be using the head touch sensor to inform NAO about the state
of the environment. Tapping the front head button indicates that there is a wall in front of it, and
tapping the rear head button indicates that there is a wall to the right. Tapping the middle button
means that the input is done, and NAO should execute the next action.

Thus, if we only tapped the middle button, then there are no walls on the right and front of NAO.
If we tapped the top then middle button, then there is a wall to the front, but none on the right.
If we tapped the rear then middle button, there is a wall to the right, but not the front. And lastly,
if we tapped the front, rear, and then the middle button, there are walls to the front and the right.

Once the state of the environment is known, NAO can then execute the correct action.

Advanced Task
The Right Way to
Maze Solving

01.

02.

03.

10 - finding your way
5 - the right way to maze solving

153

01/
First, we will use the Tactile Head box from the sensing category, to detect touches on the head.
Recall that the 3 outputs to the right of the box trigger when the front, middle, and rear touch
sensors on the head are touched respectively.

02/
Now, create a custom Python box, and add 3 inputs of type “bang”.

 10 - finding your way
5 - the right way to maze solving

154

03/
Connect each of the outputs of the Tactile Head box to the inputs of the custom Python box.
Then, double-click the Python box to edit the code.

04/
First, in the onLoad function, we initialize a few variables. We create a proxy to ALMotion, and 2
boolean variables, front and rear, to store whether the front and rear head touch sensors were
triggered. Also, forwardDist stores the distance in meters that the NAO should walk to move
from one node in the maze to another.

10 - finding your way
5 - the right way to maze solving

155

05/	 Next, edit the 3 functions that are triggered by the Python box’s inputs, onInput_Front,
onInput_Middle and onInput_Rear. The code for onInput_Front and onInput_Rear set
the relevant boolean variables to True, to indicate that a wall is present in front and to the right of
the NAO respectively. When the middle button is triggered, the algorithm computes the next action
for the NAO and executes it. Then, the variables storing the states of the walls are reset to .

06/
Finally, the function computeNextAction needs to be filled in. In this function,
the different cases of the walls are checked, and the relevant action is taken.

07/
Run the behavior without putting NAO in the maze.
Try pressing the head buttons and check that NAO performs the correct action.

08/
Now, place NAO in the maze. Touch the head sensors to indicate whether there is a wall to
the front and/or right of NAO, and ensure that NAO successfully executes the wall-following
algorithm and reaches the goal position.

 10 - finding your way
5 - the right way to maze solving

156

Another algorithm to solve a known maze is called breadth-first search. The search algorithm visits
cells in a queue data structure (discussed in an earlier module), and adds neighboring cells into the
queue as it goes along. By exploring the maze in this fashion, the algorithm is guaranteed to find
the shortest path from the start to the goal.

The algorithm can be described with the following steps:

	 Add the starting position into the queue, and give it a value 1.
	
	 Remove the front node from the queue, and save its value as i.
	
	 If the node is the goal position, go to step 7.
	
	 Otherwise, examine all the neighbors of that position. If the neighbor hasn’t been visited 		
	 before, add it into the queue with value i + 1.
	
	 If the queue is empty, there isn’t a path from the start to the goal.
	
	 Otherwise, go to step 2.
	
	 The goal position has been found, and has value i.
	
	 Look at the neighbors of the node and pick one that has value i - 1.
	
	 Repeat step 8, reducing i by 1 in each step, until the starting position is reached.
	
	 The order of nodes corresponds to the reverse of the path from the start to the goal.

Finding the
Shortest Path
in a Maze

01.

02.

03.

04.

05.

06.

07.

08.

09.

10.

10 - finding your way
6 - shortest path in a maze

i = iteration index

157

The figures below illustrate the steps in the algorithm, and the numbers over each node
correspond to the value given to that node in the queue. We will describe how the algorithm
proceeds using the figures. Numbers in red indicate nodes that are in the queue, and numbers
in blue indicate nodes that were visited and are no longer in the queue.

Initially, the only node in the queue is the start position, and it has value 1. (Step 1)

The front node of the queue is removed (node 1), and its neighbors are examined. It has only 1
neighbor, and it is given a value 2, and placed in the queue. (Steps 2 to 6)

Note: Node 1 is no longer in the queue, and it is shown in blue in the figure below.

 10 - finding your way
6 - shortest path in a maze

158

The process is repeated and more nodes are added into the queue. In the figure below,
a node with value 8 has just been added to the queue. (Steps 2 to 6)

Note: Nodes with values 1-7 are no longer in the queue, but they are shown in the figure below.

10 - finding your way
6 - shortest path in a maze

159

Node 8 has two neighbors that have not been visited, so both of them get value 9 and are placed
in the queue. (Steps 2 to 6)

 10 - finding your way
6 - shortest path in a maze

160

The nodes with value 9 are removed from the queue one after the other, and their neighbors
are given value 10 and placed in the queue. (Steps 2 to 6)

10 - finding your way
6 - shortest path in a maze

161

This process continues on as nodes are removed from the queue, and their neighbors are given
higher values. The figure below shows the values of visited nodes up to 14, and the nodes in the
queue with value 15. (Steps 2 to 6)

 10 - finding your way
6 - shortest path in a maze

162

Eventually, the goal position receives a value of 100, and the algorithm jumps from step 3 to step
7. The figure below shows the values of the nodes on the path to the goal and their immediate
neighbors. Not all the values of all explored nodes are shown. (Steps 2 to 7)

10 - finding your way
6 - shortest path in a maze

163

Now that the goal position has been reached, the path from the start position to the goal has to be
found. To do so, we start from the goal position and store its value as i. In this case i = 100. From
that state, we look at its immediate neighbors to find one with value i - 1, i.e., 99. There is only one
neighbor with that value, so that node gets added to the final path. (Step 8)

In the figure below, the currently active node is highlighted in light blue, and its neighbors are
shown in purple.

 10 - finding your way
6 - shortest path in a maze

164

The algorithm now moves to the node with value 99. i is now set to 99 and the neighbors
of the node is checked for i - 1. Again, there is only a single neighbor, so the algorithm selects
that node. (Step 8)

10 - finding your way
6 - shortest path in a maze

165

The algorithm is now at the node with value 98, and so i = 98. The node has two neighbors that have
not been considered, one with value 97 and one with value 99. Thus, the algorithm picks
the node with value 97, i.e., i - 1. If there were more nodes with value 97, then it would not matter
which node of value 97 the algorithm picked. (Step 8)

The algorithm continues in this fashion until the starting node is reached (value 1).
The nodes that were selected by the algorithm along the way then form the path from the starting
position to the goal. (Steps 9 to 10)

 10 - finding your way
6 - shortest path in a maze

166

Additional
Exercises

Complete the advanced task, without using Python.

Hint: you can use a finite state machine to keep track of which buttons
have been pressed.

Change the algorithm of the advanced task to do left-hand-following instead
of right-hand-following.

Implement the breadth-first search algorithm in Python.

Hint: use the starter code in “Lesson 10 - Exercise - BFS starter code.crg”.

01/

02/

03/

10 - finding your way
7 - additional exercices

167

Module
questions

Describe the dead-end filling algorithm in your own words.

Why does the dead-end algorithm work?

01/

02/

Basic

Intermediate

ADVANCED

03/

04/

Perform dead-end filling on the maze below.

After all the dead-ends have been filled in the maze above, there isn’t a single direct
path to the goal. What do the non-filled squares represent?

05/

06/

Describe the wall-following algorithm in your own words.

In what cases does the wall-following algorithm fail? Why?

Create a maze where the right-hand-rule will find a much shorter path
than the left-hand-rule.

Does the wall-following algorithm find the shortest path from the start position
to the goal?

 10 - finding your way
8 - module questions

168

Perform the breadth-first search algorithm by hand on the graph below, filling in the
values for each node, and then finding a path from the starting position to the goal.

Does the breadth-first search algorithm always find the shortest path?

09/

10/

10 - finding your way
8 - module questions

169

modules
questions
and solutions

modules questions and solutions

170

Basic:

How can you tell if the robot is charging?

The light on the charger should be red.

How should you place the robot when turning it on?

Sitting upright with its feet flat on the floor.

How should the robot be held?

With both hands around its chest.

How is the order the Choregraphe boxes execute determined?

They execute in the order they are connected with arrows.

Intermediate:

What does the voice shaping parameter for the Say box control?

The tone and pitch of the voice.

What does the speed parameter for the Say box control?

How slow or fast the robot speaks.

Advanced:

Name two programming languages that can be used on NAO.

C++ and Python.

How can NAO be programmed in Python using Choregraphe?

Right-click to create a new box, set the name, description and picture, and click ok.
Double-click on the box to edit the python code.

What is a variable?

A symbolic name assigned to a value which can be modified.

01/

02/

03/

04/

05/

06/

07/

08/

09/

hello
world1

modules questions and solutions

171

10/

11/

12/

What is a function or method in programming?

A section of code that performs an operation, and can be called by name elsewhere
in the code.

What is a function argument?

An input to a function, which can be used within.

Do the number of spaces and tabs matter in python?

Yes, the spacing at the beginning of a line denotes scope.

modules questions and solutions

172

The Coordinate Plane

Sketch the coordinate plane of NAO, and plot and label the following points:
 a. The point (0.5, 2).
 b. The point 3 meters directly in front of the robot?
 c. The point (5, 3)?
 d. The point 1 meter to the left of the robot?
 e. The point at an angle of -60° from the robot and 3 m away.

Compute the angle from the robot to each of the above five points.
a) 75.96 degrees, b) 0 degrees, c) 30.96 degrees, d) 90 degrees, e) -60 degrees

Basic:

What are the three parameters in the Walk To box?

The amounts in the x, y and theta directions to walk. x is forward, y is side to side, and theta
is rotation.

What unit of measure is used for x and y coordinates?

Meters.

What is theta?

The amount the robot should rotate in degrees. Positive angles are counterclockwise.

What unit of measure is used for theta?

Radians.

For NAO, what does “stiffness” mean?

How much resistance should be provided by the motors.

What problems do you face if stiffness is always set to 100%?

High stiffness consumes battery power more quickly and heats up the motors.

01/

02/

03/

04/

05/

06/

07/

08/

walk
it out2

modules questions and solutions

173

09/

10/

12/

13/

14/

15/

16/

11/

Intermediate:

What is odometry?

The robot’s model of how it has moved.

Why do odometry errors occur?

Effects of the real world: imperfectly modeled motors, imperfect assembly of the robot,
unexpected floor conditions (the floor surface matters a great deal), and outside forces
acting on the robot.

Define the Cartesian plane, and explain how it relates to NAO walking.

Points on a plane are specified using coordinates along two perpendicular axes.
The coordinates for NAO to walk to are specified on a Cartesian plane.

Advanced:

What is a parameter?

An input to a function.

Name the parameters used to make NAO walk.

The x, y and theta coordinates of its destination.

Name three math functions used in programming walking for robot.

Three of multiplication, division, sqrt, atan2.

What do atan2(1.0, 0.0), atan2(0.0, -1.0), and atan2(sqrt(3)/2, 1/2)
evaluate to?
 π/2, π , and π/3.

Why is atan2 used instead of a single-argument arctan function?

The arctan function is undefined at x = 0. Also arctan returns values in (-π/ 2, π / 2) ,
while atan2 covers the entire circle.

modules questions and solutions

174

Basic:

What hardware devices does the robot use for speech recognition?

Microphones in its head.

What is a conditional statement?

Depending on the value of a true / false condition, a segment of code is or is not executed.

What is the threshold for speech recognition with NAO? What value did you find to work
well?

The threshold is how confident NAO must be to claim it recognized speech.
Lower values are more tolerant.

Where is the Speech Recognition box found?

In the Audio > Voice section of the box list.

Explain the three parameters of the Speech Recognition box.

The word list is the set of words NAO attempts to listen for. The threshold is how confident
NAO must be to decide it recognized speech. The Visual Expression checkbox enables setting
the lights to indicate it is listening or heard a word.

Explain the two outputs of the Speech Recognition box.

The top output is triggered when a word is recognized with that word. The bottom
output is triggered if speech is heard but no word is recognized from the word list.

Intermediate

Which conditional box is used to control program flow from multiple answers?

The Switch Case box.

What punctuation is used to distinguish strings, in both Choregraphe and Python?

Quotes, double “ or single ‘.

01/

02/

03/

04/

05/

06/

07/

08/

hearing
things3

modules questions and solutions

175

09/

10/

11/

12/

Advanced

What module is utilized in TextToSpeech (the parameter to ALProxy)?

ALTextToSpeech.

Define string concatenation.

Appending two strings together. For example, “Hello “ + “NAO.” gives “Hello NAO.”

What are the differences between inputs and parameters of Choregraphe boxes?

Parameters can be set by clicking on the wrench, inputs must be sent from another box.
Additionally, parameters are values which can be set in advance

What is the syntax in Python for a chain of conditional statements?

if condition_1:
…
elif condition_2:
…
else:
…

modules questions and solutions

176

Basic:

What is a keyframe?

A set of fixed positions the robot moves its joints to.

What does NAO do in between keyframes?

It interpolates between the joint angles of adjacent keyframes.

Where is NAO’s center of gravity?

In its torso.

Where must the center of gravity be for NAO to remain balanced?

Directly above the robot’s feet (or foot) which are touching the floor.

When creating a box in Choregraphe, how do you make it a box where keyframes
can be edited?

Change the “Box offspring” to “Timeline”.

Why is it not suggested to set a keyframe in the first frame of the timeline?

NAO will jump immediately to that position, and is likely to fall due to the rapid motion.

Intermediate:

What types of motions will cause NAO to fall?

Rapid motions which give it momentum, or motions which shift the center of gravity away
from above the feet.

Explain the behavior of a For box in Choregraphe.

It executes the loop connected to the box multiple times.

01/

02/

03/

04/

05/

06/

07/

08/

Let’s
dance4

modules questions and solutions

177

09/

10/

11/

12/

13/

A Counter box has an initial value of 2, a final value of 10, and a step value of 2.
How many times does the loop execute?

5 times. The counter value will be 2, 4, 6, 8 and 10.

Advanced:

Which joint is the HeadYaw joint and which is the HeadPitch?

The HeadYaw is for side to side motion, the HeadPitch for up and down motion.

What units are angles passed to the angleInterpolation function in?

Radians.

How many radians is 45 degrees?

π/4

 How many degrees is π/3 radians?

60 degrees

modules questions and solutions

178

Basic:

Where are NAO’s two cameras located?

On its chin and forehead.

How many microphones does NAO have and where are they?

Four. Two in the ears, one on the back of the head and one on the forehead.

What touch sensors does NAO possess?

Two foot bumpers, three head touch sensors, a chest button, and foot pressure sensors.

Intermediate:

What are the two main components of a finite state machine?

States and transitions.

Explain when the two outputs of the Bumpers box are triggered.

One is triggered when the left bumper is pressed, the other is triggered when the right
bumper is pressed.

Advanced:

Explain what the gyroscope and accelerometer measure.

The gyrometer measures angular velocity and the accelerometer measures acceleration
(e.g., gravity).

Which three body sections can NAO’s motors be grouped into?

Legs, arms and head/neck.

What do encoders measure?

The position/angle of a joint.

01/

02/

03/

04/

05/

06/

07/

08/

sense
and act5

modules questions and solutions

179

09/

10/

11/

12/

13/

14/

15/

16/

Explain at a high level how NAO can know the position of its hand relative to its feet.

It knows the position of each joint, and can compute the transformation from this information.

What three primary color components determine the color emitted from an LED?

Red, green and blue.

What is a boolean variable?

A variable that is either true or false.

The finite state machine with buttons toggling two binary variables had four states, and
the one with three binary variables had eight states. How many states does an FSM with
four binary variables that you can toggle have? Five binary variables? Ten binary variables?
N binary variables?

16, 32, 1024, 2n

True or False: Everything on a digital computer is stored in binary.

True.

How many different colors can be represented in the 24-bit RGB format?

224

 Write the RGB value for the color purple in hexadecimal.

0xFF00FF

Compute 00110101 | 10011010 (binary), 0x7C | 0x5B (hexadecimal), and 118 | 201 (decimal).

10111111, 0x7F, 0x76 | 0xC9 = 0xFF = 255

modules questions and solutions

180

Basic:

What does CPU stand for?

Central Processing Unit.

Explain, at a high level, how a single processor performs multi-tasking.

The operating system executes one thread for a tiny slice of time, and then quickly switches
to the next one to provide the illusion of true concurrency.

Intermediate:

Explain the use for behavior layers.

Behavior layers allow multiple behaviors using different body parts to be executed
simultaneously in Choregraphe.

Why does standing up straighter make the robot more susceptible to falling?

Because the robot’s center of gravity is higher, a smaller tilt will make it leave the stable
base region of the feet.

Advanced:

Why did we need to use the simplifyAngle method when computing the odometry?

To prevent wraparound issues. Let’s say that in one frame, the angle returned for
the robot’s position is π-0,1, and the next frame the robot rotates 0.2 radians. Then the new
angle is -π+0,1. Without the simplifyAngle method, we would calculate that in this frame,
the robot turned nearly 2π radians as opposed to the actual rotation of 0.2 radians.
This makes quite a difference!

Explain the use of the setWalkTargetVelcoity function.

This sets a velocity - a direction and speed - for the robot to walk in. The velocity has x, y
and rotational components. The robot continues to walk at this velocity until a new command
is given.

01/

02/

03/

04/

05/

06/

do the
robot6

modules questions and solutions

181

07/

08/

09/

10/

Why did we need to call time.sleep in the main loop?

Otherwise the main loop will needlessly consume all the computation available, which is
wasteful and prevents other important tasks from executing (such as the software making
the robot walk).

Why do we have to set the walk velocity to zero at the end of the loop?

Otherwise the robot won’t stop walking.

Using only division, multiplication, addition, subtraction, and integer truncation, compute
the remainder of x / y in python. (This function, called modulus, is already implemented
in python as the % operator. But do not use the % operator.)

x - int(x / y) * y

Find the big-O runtime cost of the following functions:
 a. Searching for a name in a telephone book of n pages by:
	 i.Opening a page you bookmarked previously.
	 Ο(1)
	 ii.Beginning at the first page, and checking each page in order for the name.
	 Ο(n)

	 iii.Open the middle page, see if the name is to the left or the right, then open
	 the middle of the remaining half of the book, and repeat until the name is found.
	 Ο(log n). This algorithm is called binary search.

 b. Enumerating every 5-card hand in a deck of n cards.
 Ο(n5)

 c. Finding the correct n-bit key to open a lock by trying every possible key
(this is called a brute force attack in computer security).
 Ο(2n)

 d. Sorting a list of numbers by finding the lowest number of the entire list, placing it first,
finding the next lowest number, placing it second, and so on. This is called selection sort.

 Ο(n2). There are faster sorting algorithms which are Ο(n log n) .

modules questions and solutions

182

Basic:

What does the face detection box output?

The number of faces that were detected.

Speculate as to why the robot does not always detect your face.

Possible responses include: poor algorithms, changing lighting conditions,
variations in angle and position.

Intermediate:

What is the difference between face detection and recognition?

Detection is realizing that we see a face: recognition is knowing whose face we see.

What does the face recognition box output?

The name of the face that was detected.

Advanced:

What areas will the search not see? How could you expand the robot’s search,
using both the head and by walking?

It won’t see anything behind the robot or above or below the search plane. The search
could be expanded by also changing the HeadPitch angle, and/or by turning around.

01/

02/

03/

04/

05/

face
off7

modules questions and solutions

183modules questions and solutions

184

Basic:

What is a pixel?

A pixel is a picture element, and stores a small single-colored section
of an image or computer screen.

What does a NAOMark box in Choregraphe do?

The NAOMark box uses computer vision to detect specially-designed NAOMarks.
When a NAOMark is in the camera view, the NAOMark box triggers and returns
the identification number of that NAOMark.

Intermediate:

How does object recognition work?

Object recognition works by comparing the features detected by computer vision,
against a library of known objects and their features.

Is color a good feature to be used in computer vision? Why or why not?

In general, color is not a good feature for computer vision, because the color detected
by the camera depends on the color of the object, and the color of the light. For example,
a red piece of paper looks red under white light, and a white piece of paper looks red
under red light.

When learning a complex object, why do we need to provide many different images
of the object?

A complex object looks different from different perspectives, and so it is important to
provide the features of these perspectives to the vision algorithm when creating the object
database, so that it can recognize the object from any perspective.

01/

02/

03/

04/

05/

modules questions and solutions

object
recognition8

185

Advanced:

How do we use Python to determine if a string starts with a prefix, e.g.,
how do we check that a variable called mystr starts with “Abc”?

mystr.startswith(“Abc”)

In the Advanced Task, why does the robot stop walking once it reaches the object?

When the object is very close to the robot, the object is no longer in NAO’s camera’s
field-of-view, i.e., the camera does not see the object. Thus, the vision algorithm does not
detect any object and so the robot stops walking.

06/

07/

modules questions and solutions

186

Describe human-robot interaction.

The field studying how humans and robots interacts, and how robots
can be made both easier and more pleasing to use for humans.

Give an example of a robot that interacts with humans.

A car that parallel parks itself (or other examples).

Give a reason why humans find NAO an appealing robot.

It is shaped like a human and looks cute.

Discuss how multiple robots would need to cooperate to enact a play together.

They would communicate wirelessly to remain in sync, executing the same parts
of the script in unison.

01/

02/

03/

04/

modules questions and solutions

games
and stories9

187modules questions and solutions

188

Basic:

Describe the dead-end filling algorithm in your own words.

The dead-end algorithm repeatedly fills in dead ends in the maze.
When all dead ends have been filled, the path to the goal is shown.

Why does the dead-end algorithm work?

The path to the goal cannot have any dead ends, so filling in dead ends will never
cover the path.

Intermediate:

Perform dead-end filling on the maze below.

 After all the dead-ends have been filled in the maze above, there isn’t a single direct path
to the goal. What do the non-filled squares represent?

The remaining squares represent all possible paths to the goal. Multiple paths to the goal
can be achieved by branching on the non-filled squares.

01/

02/

03/

04/

finding
your way10

modules questions and solutions

189

Advanced:

Describe the wall-following algorithm in your own words.

The wall-following algorithm follows one wall (either on the left or right) and moves around
corners until the goal is found.

In what cases does the wall-following algorithm fail? Why?

The wall-following algorithm fails if walls are not connected together. Since the algorithm
follows walls, it cannot reach a goal that is not connected by walls.

Create a maze where the right-hand-rule will find a much shorter path than
the left-hand-rule.

Does the wall-following algorithm find the shortest path from the start
position to the goal?

In general, no.

05/

06/

07/

modules questions and solutions

08/

190

Perform the breadth-first search algorithm by hand on the graph below, filling in the
values for each node, and then finding a path from the starting position to the goal.

Does the breadth-first search algorithm always find the shortest path?

Yes.

09/

10/

modules questions and solutions

192

Annex
Academic
lesson plans

193Academic lesson plans
1 - Hello World

>> How to switch on NAO humanoid robot

>> How to connect to NAO with Choregraphe 	
	 on a computer

>> How to make NAO speak
	 with Choregraphe

** RST.9-10.3. Follow precisely a complex multistep procedure when
carrying out experiments, taking measurements, or performing
technical tasks, attending to special cases or exceptions defined in
the text.

>> How to vary the pitch and speed of NAO’s 		
	 voice

** RST.9-10.3. Follow precisely a complex multistep procedure when
carrying out experiments, taking measurements, or performing
technical tasks, attending to special cases or exceptions defined in
the text.

>> How to program NAO to speak
	 with Python

** RST.11-12.3. Follow precisely a complex multistep procedure
when carrying out expweriments, taking measurements, or
performing technical tasks; analyze the specific results based on
explanations in the text.

** RST.11-12.8. Evaluate the hypotheses, data, analysis, and
conclusions in a science or technical text, verifying the data when
possible and corroborating or challenging conclusions with other
sources of information.

** RST.11-12.9. Synthesize information from a range of sources (e.g.,
texts, experiments, simulations) into a coherent understanding of a
process, phenomenon, or concept, resolving conflicting information
when possible.

** RST.11-12.10. By the end of grade 12, read and comprehend
science/technical texts in the grades 11–12 text complexity band
independently and proficiently.

Lesson plan
hello world

Objective
In this module, students will learn:

Key vocabulary
Choregraphe, Say Box, Parameter, Variable,
Function Method

Materials Needed
Choregraphe, NAO robot, Internet Connection
(wired or wireless)

Activity Outline

Students should read the “Hello World
Module”

Complete the module questions and
review

Prepare a short written algorithm (set
of step by step instructions) of what
they plan to do once they have access to
Choregraphe and NAO

Teacher may want to demonstrate safe
methods for handling NAO and discuss
protecting NAO joints from damage.

01/

02/

03/

04/

hello
world1

194

Common Core State
Standards:

6.NS.6. Understand a rational number as a
point on the number line. Extend number line
diagrams and coordinate axes familiar from
previous grades to represent points on the
line and in the plane with negative number
coordinates.

 •Understand signs of numbers in ordered
pairs as indicating locations in quadrants of
the coordinate plane; recognize that when two
ordered pairs differ only by signs, the locations
of the points are related by reflections across
one or both axes.

 •Find and position integers and other rational
numbers on a horizontal or vertical number line
diagram; find and position pairs of integers and
other rational numbers on a coordinate plane.

6.NS.8. Solve real-world and mathematical
problems by graphing points in all four
quadrants of the coordinate plane. Include
use of coordinates and absolute value to find
distances between points with the same first
coordinate or the same second coordinate.

Lesson plan
Cartesian Coordinate Plane

Objective:
The students will be introduced to the
coordinate system through a human Cartesian
coordinate plane.

Key vocabulary
Abscissa, axes, coordinate, coordinate plane,
ordinate, ordered pair, origin, quadrant, x-axis,
y-axis

Materials Needed
Index cards with coordinates
Masking tape
Example of a coordinate plane
(transparency, on chalkboard, LCD projector)

procedure

Set up classroom as a coordinate plane.
Use masking tape to make an x-axis and
y-axis. Put desks in rows over the axes,
making sure one of the desks is on the
origin.

Make a card for each desk with the
correct ordered pair.

Class discussion of the Cartesian
coordinate system. Many students have
already been exposed to the coordinate
plane. Use their prior knowledge to
create an example of a coordinate plane,
and label all parts. As plane is created,
students should copy example in their
notes, as teacher creates it on the board,
transparency, or computer.

Ask students such questions as

 • Who is sitting at the origin?

 • Who is on the x-axis?

 • Who is on the y-axis?

 • Who is in Quadrant I?

Students could also be asked to stand if
at origin, on x-axis, etc.

01/

02/

03/

04/

walk
it out2

Academic lesson plans
2 - walk it out

195

After reviewing all key vocabulary, have
students stand along wall and give each
an index card. One by one have students
find their new location starting at the
origin. Students need to walk along
x-axis, then y-axis to find seat. Discuss
any problems that arise, such as two
students at one seat.

Students can move back to original seats
after everyone is seated.

Students then should be called on to give
coordinates of their original seat.

Discussion for later class: Was there a
shorter walk to the new desk? How would
you direct someone to the desk without
giving coordinates (assuming you could
walk through desks)?

05/

06/

07/

08/

Assignment/Extension:
 • Assign a worksheet or book problems
that has students label missing parts of the
coordinate plane, plot coordinates, and name
coordinates.

 • Use graphing software, such as Geometer’s
Sketchpad, to plot and name coordinates. This
could be done as a group activity, or individually
on computers.

 • Have students visit graphing websites and
practice skills or see more examples. Some
examples are:

http://www.purplemath.com/modules/plane.
htm

http://www.wisc-online.com/Objects/
ViewObject.aspx?ID=ABM201

http://mathforum.org/cgraph/cplane/pexample.
html

Academic lesson plans
2 - walk it out

196

techniques in the context of solving real-world
and mathematical problems.

8.G.8. Apply the Pythagorean Theorem to find
the distance between two points in a coordinate
system.

G-SRT.6. Understand that by similarity, side
ratios in right triangles are properties of the
angles in the triangle, leading to definitions
of trigonometric ratios for acute angles.

G-SRT.8. Use trigonometric ratios and the
Pythagorean Theorem to solve right triangles
in applied problems.*

Materials needed
Cartesian coordinate system on transparency,
chalkboard, or LCD projector
Scientific calculator
Graph paper
Centimeter rulers

Procedure:
09/

Review the Sine, Cosine, and Tangent
functions with students.

10/

Give students a point A (10 cm, 30°). Have
students draw picture to scale, labeling r and θ,
and x and y. Have students measure and record
x and y. Students should check measurements
by calculating x and y using trigonometric
functions. Discuss any differences. Repeat this
with B (5 cm, 60°) and C (12 cm, 45°), each point
being plotted on new graphs.

Common Core State
Standards:
6.NS.6. Understand a rational number as a
point on the number line. Extend number line
diagrams and coordinate axes familiar from
previous grades to represent points on the
line and in the plane with negative number
coordinates.

 • Understand signs of numbers in ordered
pairs as indicating locations in quadrants of
the coordinate plane; recognize that when two
ordered pairs differ only by signs, the locations
of the points are related by reflections across
one or both axes.

 • Find and position integers and other rational
numbers on a horizontal or vertical number line
diagram; find and position pairs of integers and
other rational numbers on a coordinate plane.

6.NS.8. Solve real-world and mathematical
problems by graphing points in all four
quadrants of the coordinate plane. Include
use of coordinates and absolute value to find
distances between points with the same first
coordinate or the same second coordinate.

6.G.3. Draw polygons in the coordinate
plane given coordinates for the vertices;
use coordinates to find the length of a side
joining points with the same first coordinate
or the same second coordinate. Apply these

Lesson plan
Trigonometric Functions of an Angle - Extension

Objective:
The students will be able to find the
x-coordinate, y-coordinate of a point, given
(r1,θ1)and (r2,θ2).

sense
and act5

Academic lesson plans
5 - Sense and act

197

11/

Now have students plot point A, and then from
A go the distance and angle of point B. (This
is essentially adding vectors tail to tail, but
we are looking for coordinates of B, not the
resultant vector. This can later be discussed
when teaching vectors). Have students come
up with a real world example to illustrate what
is happening. An example would be: I started
hiking from my campsite at a 30° for 10 miles.
I then turned 60° and continued walking 5 more
miles to my friend’s campsite. How many
miles would I have walked to my friend’s camp,
had I gone due east and then north from my
campsite?

12/

Have students share their examples or come up
with a class example.

13/

Students need to calculate missing distances
by creating two right triangles. The first right
triangle is made by dropping a perpendicular
from point A to the x-axis. Students can find xA
value by using the Cosine function, and yA value
by using the Sine function. The second right
triangle is made by dropping a perpendicular to
the horizontal line containing point B (students
may have to find a different angle than the given
one to calculate distances). Students can find xb
value by using the Cosine function, and yb value
by using the Sine function. To find the location
of point B from the origin, add x and y values
together (xA+xB,yA+yB). Students should realize
the x-coordinate is how many miles I hiked due
east and the y-coordinate is how many miles I
walked north. Students can check answers with
their scale drawing and compare results.

14/

Class discussion:

 • What was the total distance hiked in the
initial problem?
 • What would the total distance hiked have
been, going due east and then north?
 • Which was the longer walk?
 • How easy is it to walk a straight line
distance in the woods? How are streets laid
out in a town, at angles, or perpendicular and
parallel?

Assignment/Extension:
Have students repeat process with points B
and C. Students should also create a real
world example to go with it.

Academic lesson plans
5 - Sense and act

198

8.G.8. Apply the Pythagorean Theorem to find
the distance between two points in a coordinate
system.

G-SRT.6. Understand that by similarity, side
ratios in right triangles are properties of the
angles in the triangle, leading to definitions of
trigonometric ratios for acute angles.

G-SRT.8. Use trigonometric ratios and the
Pythagorean Theorem to solve right triangles in
applied problems.*

Materials needed
Cartesian coordinate system on transparency,
chalkboard, or LCD projector
Scientific calculator

Vocabulary:
adjacent, angle, Cosine, degrees, distance
formula, initial side, opposite, Pythagorean
Theorem, radians, Sine, Tangent, terminal side

Procedure:
15/

Plot the point A (3, 4) on coordinate plane. Ask
students to find the distance from origin to point
A. Class discussion: Based on their previous
experience, students may use Pythagorean
Theorem or distance formula. Go over both
methods, drawing the straight line distance
from origin to A and labeling it r. Have students
come up with the formula of r to be r = √x2+y2.
Students should add both methods and formula
to notes. Give students a few points from first
quadrant to calculate r for.

Common Core State
Standards:
6.NS.6. Understand a rational number as a
point on the number line. Extend number line
diagrams and coordinate axes familiar from
previous grades to represent points on the
line and in the plane with negative number
coordinates.

 • Understand signs of numbers in ordered
pairs as indicating locations in quadrants of
the coordinate plane; recognize that when two
ordered pairs differ only by signs, the locations
of the points are related by reflections across
one or both axes.

 • Find and position integers and other rational
numbers on a horizontal or vertical number line
diagram; find and position pairs of integers and
other rational numbers on a coordinate plane.

6.NS.8. Solve real-world and mathematical
problems by graphing points in all four
quadrants of the coordinate plane. Include
use of coordinates and absolute value to find
distances between points with the same first
coordinate or the same second coordinate.

6.G.3. Draw polygons in the coordinate
plane given coordinates for the vertices;
use coordinates to find the length of a side
joining points with the same first coordinate
or the same second coordinate. Apply these
techniques in the context of solving real-world
and mathematical problems.

Lesson plan
Trigonometric Functions of an Angle

Objective:
The students will be able to locate a point in a
coordinate plane by distance (r) and angle (θ)
given its coordinates (x, y).

Academic lesson plans
5 - Sense and act

199

16/

Refer to previous class discussion after the
human Cartesian plane activity, about what
else is needed to get to point A, given only r.
Students should come up with the need of an
angle. Have students label the x-axis as the
initial side and y-axis as the terminal side.
Students should define both terms in their
notebook. Students should label the missing
angle θ.

17/

Define Sine, Cosine, and Tangent using x and y.
Define again using side opposite, side adjacent,
and hypotenuse. Students are to record in
notebook.

18/

Review radians with students. Go over
procedure for putting calculators in radian
mode. Using the previous points that students
calculated r for, have students find θ in radians.

19/

Discussion for later class: How would we
locate points in a Quadrant II, III, and IV? Would
r change or θ? How would they change? If
given (r, θ) in a human Cartesian plane, would
you move left or right then walk or vice versa?
Define Cosecant, Cotangent, and Secant.

Assignment/Extension:
 • Assign a worksheet or book problems that
has students plotting points and finding the
distance and angle.

 • Give students a point in Quadrant II, III, or IV
and have them find the distance and angle.
 • Have students visit these two websites

http://zonalandeducation.com/mmts/
trigonometryRealms/TrigFuncPointDef/
TrigFuncPointDefinitions.html (can check
worksheet answers approximately)

http://www.slideshare.net/guest793408/
trigonometric-function-of-any-angle

(explains points in other quadrants, use as
an overview, future lesson still needs to be
taught)

Academic lesson plans
5 - Sense and act

200

Besides its motors, NAO has other forms of output. It has speakers on both sides of its head
that it can use to play sounds and speak - we have used the text-to-speech capabilities in earlier
modules. NAO also has a variety of light-emitting diodes (LEDs) that can change brightness and
color. As you may have learned from physics, diodes allow current to flow in only one direction.
LEDs are a class of diodes that emit light when current flows through. The figure below shows
the electronic symbol of an LED.

Around each of NAO’s speakers are 10 LEDs. These LEDs are blue in color and form a ring around
the speaker. You may have noticed these LEDs switch on as NAO is booting up. Besides turning
these LEDs on and off, you can also vary their brightness. There are also 3 similar LEDs on the top
of the NAO’s head that are blue in color.

In each of NAO’s “eyes” there are 8 color LEDs. Color LEDs can show any color, by combining
different intensities of three primary color LEDs - red, green and blue. For example, when yellow
is displayed, the red and green are on and blue is off. You may have seen the figure below, which
shows how the primary colors combine to form any color.

NAO has a color LED in its chest, and one on each foot. Similar to the eye LEDs, we can choose
what color the LED should display by changing the intensity of red, green and blue.

Academic lesson plans
5 - Sense and act

201

202

Mike Beiter

Mike is a High School Computer Science teacher at Central
Career and Technical School in Erie, Pennsylvania. He is
also an adjunct professor of computer science at Penn State
University, and Gannon University. Mike is on the STEM
development team leading the school in integrated project
based learning in areas of computer science, Programmable
Logic Controllers, and robotics.

Brian Coltin

Brian Coltin is a PhD student in the Robotics Institute at
Carnegie Mellon University. His research interests include
multi-robot coordination, scheduling and path planning,
sensor networks, and robot localization. He has participated
in the RoboCup Standard Platform League with the NAO
robots for four years as a member of the Carnegie Mellon
team.

Somchaya Liemhetcharat

Somchaya Liemhetcharat is a PhD candidate at the Robotics
Institute of Carnegie Mellon University. His research
interests are in artificial intelligence and robotics, and in
multi-robot coordination in particular, i.e., how multiple
robots of different types can work together to solve complex
problems.

about
the authors

This Textbook was created under the direction of Mike
Beiter, Computer Science teacher at Central Career and
Technical School, , and 2 PHD Students from Carnegie Mellon
University, who created the individual lessons: Somchaya
Liemhetcharat, and Brian Coltin.

203

©2015 ALDEBARAN

www.aldebaran.com

Published by Aldebaran.
Designed by Romain Belotti for Aldebaran.
Printed in France by Icones.

ALDEBARAN, the ALDEBARAN logo, and NAO are trademarks of ALDEBARAN.
Other trademarks, trade names and logos used in this document refer either to the
entities claiming the marks and names, or to their products.
ALDEBARAN disclaims proprietary interest in the marks and names of others.
Choregraphe® & NAO® are registered trademarks of ALDEBARAN.
The design of NAO® is the property of ALDEBARAN. All the photos featured
in this document are noncontractual and are the property of ALDEBARAN.

www.aldebaran.com
AMERICAS - americas@aldebaran.com
EUROPE MIDDLE EAST AFRICA - emea@aldebaran.com
ASIA PACIFIC - asia-pacific@aldebaran.com

ALD_M400022__PA01

www.aldebaran.com
AMERICAS - americas@aldebaran.com
EUROPE MIDDLE EAST AFRICA - emea@aldebaran.com
ASIA PACIFIC - asia-pacific@aldebaran.com

