
qiBullet, a Bullet-based simulator for the Pepper
and NAO robots

Maxime Busy1 and Maxime Caniot2

Abstract— The Pepper and NAO robots are widely used for
in-store advertizing and education, but also as robotic platforms
for research purposes. Their presence in the academic field is
expressed through various publications, multiple collaborative
projects, and by being the standard platforms of two different
RoboCup leagues. Developing, gathering data and training
humanoid robots can be tedious: iteratively repeating specific
tasks can present risks for the robots, and some environments
can be difficult to setup. Software tools allowing to simulate
complex environments and the dynamics of robots can thus
alleviate that problem, allowing to perform the aforementioned
processes on virtual models. One current drawback of the
Pepper and NAO platforms is the lack of a physically accurate
simulation tool, allowing to test scenarios involving repetitive
movements and contacts with the environment on a virtual
robot. In this paper, we introduce the qiBullet simulation tool,
using the Bullet physics engine to provide such a solution for
the Pepper and NAO robots.

I. INTRODUCTION

The use of the Pepper and NAO robots as research plat-
forms is widely spread across various academic fields. More-
over, each of these robot is a standard platform in a league of
the Robocup[1] competition (the Robocup@Home [2] league
for Pepper, and the Robocup soccer [3] for NAO). Addition-
ally, the Pepper and NAO robot are respectively standard
platforms in the World Robot Summit [4] competition and
in the NAO Challenge [5]. In the recent years, tremendous
progresses have been achieved in the robotics field through
machine learning approaches, and in particular data-driven
approaches such as Deep Learning and Reinforcement Learn-
ing. Such approaches often compel the developer to gather
data by iteratively repeating specific tasks with a robot.
Gathering this data in a simulation able to handle complex
environments and the dynamics of the simulated robot would
alleviate the data gathering task, and prevent the real robotic
platform from being damaged. Such a simulation would also
allow to identify potential problems in a scenario including
Pepper or NAO before deploying it into the real world.

Presently, Pepper and NAO models are available in sim-
ulation tools such as Gazebo [7], V-REP [8], Webots [9],
or Choregraphe [10]. These implementations either lack the
ability to accurately handle the physics of the model or to
simulate complex environments. More recently, a Morse-
based [11] simulation for the Pepper robot [12] has been
announced, but focuses on human-robot interactions and not
on reliable physics.

1Maxime Busy is with the Innovation Department of SoftBank Robotics
Europe, France. maxime.busy@softbankrobotics.com

2Maxime Caniot is with the Innovation Department of SoftBank Robotics
Europe, France. maxime.caniot@softbankrobotics.com

(a) (b)

(c) (d)

Fig. 1: (a) Pepper and NAO robots in the botlab environ-
ment [6]. (b) Pepper robot in the Montreal arena of the
Robocup@Home. (c) NAO robot in a soccer environment.
(d) Pepper robot in a grasping environment.

In this paper, we introduce qiBullet, an open-source sim-
ulation tool based on the Bullet physics engine [13] and the
PyBullet module [14], designed to answer the aforemen-
tioned problems. This simulator aims to provide a cross-
platform and transparent mean to embed a virtual Pepper
or NAO robot in different evironments (Figure 1), via a
Python-based API mimicking NAOqi [15] or a ROS interface
emulating the naoqi driver1 ROS [16] package. In order to
describe our work, we first specify the strong ties between
qiBullet and the Bullet physics engine. We then describe the
simulator itself, its interfaces, the components of a virtual
robot model and its control and sensing capabilities, along
with scenarios showcasing the tool. Lastly, we discuss the
exploitation and availability of the simulator.

II. PHYSICS ENGINE

We based our approach on a comparison of physics-based
simulation libraries proposed by Erez et al. [17], discussing
the differences between the Bullet, Havok [18], MuJoCo[19],
ODE[20] and Physx[21] physics engine.

1http://wiki.ros.org/naoqi_driver

ar
X

iv
:1

90
9.

00
77

9v
3 

 [
cs

.R
O

] 
 7

 F
eb

 2
02

0

http://wiki.ros.org/naoqi_driver


To build our simulator, we chose the Bullet physics engine
and the additional PyBullet module. The physics engine
is integrated with many of the popular robotics software
platforms, such as V-REP and Gazebo, and presents the
advantage of being open-source. This engine can addition-
ally be extended with PyBullet, an open-source Python
module providing robotics and machine learning capabili-
ties [22] [23] [24] [25] [26].

The qiBullet simulation has been designed to inherit the
cross-platform properties of the PyBullet Python module and
Bullet physics engine: the simulation tool can be run on
Linux, Windows and MacOS.

III. SIMULATOR

In this section, we will detail how a virtual robot is defined
in the qiBullet simulator.

A. Robot model

We use a Unified Robot Description Format (URDF) [27]
file to describe the model of a virtual robot. The different
links of the model, their masses, inertia matrices and the
joints connecting them are extracted from this file by the
engine. Mesh files are associated to each link, allowing the
engine to render the visual aspect of the robot model and to
perform collision checking.

B. Interface

Two different ways of interacting with the robot virtual
model are proposed in the simulation: The Python-based
qiBullet API or the ROS Framework.

The Python-based qiBullet API, built on top of the Py-
bullet API, allows the user to interact with the simulated
robot and more generally with the simulated environment.
To ease the integration into existing projects and ensure code
consistency, the qiBullet API mimics a part of the NAOqi
API, rendering the interaction with a virtual and a real robot
as transparent as possible.

Fig. 2: Interfacing of a Pepper virtual model with the ROS
framework. The wrapper specifies the description of the
robot, publishes the sensory data of the model and subscribes
to control topics.

The qiBullet simulator also provides a ”ROS wrapper”
built on top of the API, emulating the naoqi driver ROS
package and allowing the user to interact with the virtual

robot model through the ROS framework. As described in
Figure 2, the wrapper retrieves the sensory data of the model
to publish it into the framework, and retrieves commands
from the framework to apply them onto the model.

In order to facilitate the use of the simulator for machine
learning tasks, the API can also be used to instantiate, reset,
and stop several independent simulated instances, running
in parallel. It can also be used to spawn or remove virtual
robots from an instance, and to control the position of the
light source of the simulation.

C. Control and Sensing

This subsection illustrates the control and sensing
capabilities of the Pepper and NAO virtual robots in the
qiBullet simulator.

The joints of the models can be controlled independently
or as groups to reach a specified articular position with a
specified speed. Several postures can be applied onto the
models, similar to the postures defined within the NAOqi
API. Additionally, the base of the Pepper virtual robot can
be controlled in position or in velocity.

Fig. 3: Synthetic RGB image retrieval from the top camera of
a virtual Pepper, in a simulated environment. The obtained
RGB image is displayed in the bottom left corner, using
OpenCV.

Each Pepper and NAO virtual model embeds two RGB
cameras (Figure 3). The Pepper virtual model additionally
embeds a depth camera. Similarly to the NAOqi API, the
resolution of the retrieved synthetic images can be selected
by the user. The parameters of the simulated cameras are
tuned to match the ones of the real model, although it is
important to point out that a real depth image from Pepper
will be more noisy than a synthetic one. The Pepper virtual
model also possesses laser sensors attached to its base,
mimicking the lasers of the real robot. Finally, the position
of each model in the world frame can be directly retrieved
from the qiBullet API, providing odometry information. In
our simulation, the odometry drift is not simulated. The API
can also provide collision data for a link or a group of links
of the desired virtual model.



D. Scenarios

In this subsection, we present three different scenarios
showcasing the qiBullet simulator.

a) Workspace computation: We aim to sample the right
and left arm workspaces of the Pepper robot, and to evaluate
the manipulability [28] of each sampled configuration. The
kinematic chains start at the Tibia link and respectively
end at the right and left gripper links. To do so, we
instantiate 10 simulation instances. In each simulation and
for each iteration, an articular position is randomly defined
and applied onto the joints of a chain. If the chain is self
colliding with the model, the position is deemed incorrect,
and another position is computed. If the end effector does
not self collide, the reached position and the corresponding
manipulability are added to the workspace. When all of the
instances have reached 4000 successful iterations for each
arm, the results are combined and normalized with respect
to the maximum manipulability value obtained to generate
a workspace containing 40000 elements for each kinematic
chain (see Figure 4(a)).

(a) (b)

Fig. 4: (a) RViz display of the right and left arm workspaces
of the Pepper robot, with kinematic chains starting from the
Tibia link, and respectively ending at the right and left grip-
per links. The color of each point represents the associated
normalized manipulability value: green corresponds to the
maximum manipulability value, while red corresponds to the
minimum. (b) Grasping scenario with a virtual Pepper robot:
the pink cube in the right hand of Pepper is the object to be
grasped.

b) Grasping task: We define a grasping scenario,
where Pepper is placed in front of a table on which an
object to be grasped is positioned. The physical properties
of the Bullet physics engine allow to virtually test out such
a scenario with the Pepper virtual model (see Figure 4(b)).

c) Walking task: We define a walking scenario, where
NAO is placed standing still in a flat world. The simulator
can be used to test the balance of the robot while being
controlled with different walking algorithms (see Figure 5).

(a) (b)

Fig. 5: (a) and (b) Virtual NAO robot being controlled by a
walking algorithm.

The use of the qiBullet simulator can be extended beyond
these scenarios, for instance to generate/extend datasets with
synthetic data [29], to train Reinforcment Learning algo-
rithms or to perform localization and navigation tasks.

IV. EXPLOITATION

In order to foster the use of the qiBullet simulator, its
code is made open-source and is available on Github2. The
qiBullet repository contains the files defining the Pepper
and NAO robot models, the Python-based qiBullet API,
examples illustrating how to use the simulator, an auto-
matically generated documentation, and unit tests. The unit
tests are automatically launched by a continuous integration
tool3 when the simulation is updated, in order to ensure
the stability of the library. Moreover, the qiBullet4 Python
package has been created and is updated after each new
release of the simulator: this particular packaging allows a
simple installation of our simulator and of its dependencies.

V. CONCLUSION

In this paper we introduce qiBullet, a simulator based on
PyBullet and the Bullet physics engine, aiming to virtually
emulate SoftBank Robotics’ robots in a physically accurate
fashion. The simulator can sustain multiple instances running
in parallel, provides a Python API to interact with the sensors
and actuators of the simulated models, and can be interfaced
with the ROS framework. In an effort to open the simulator
to the community, its code has been made public and is
hosted on Github. The work on the qiBullet simulator is
still ongoing, we envision introducing additional features and
enhancing the existing robot models.

REFERENCES

[1] Hiroaki Kitano, Minoru Asada, Yasuo Kuniyoshi, Itsuki Noda, and
Eiichi Osawa. Robocup: The robot world cup initiative. 1995.

[2] Thomas Wisspeintner, Tijn Van Der Zant, Luca Iocchi, and Stefan
Schiffer. Robocup@ home: Scientific competition and benchmarking
for domestic service robots. Interaction Studies, 10(3):392–426, 2009.

2https://github.com/softbankrobotics-research/
qibullet

3https://travis-ci.org/softbankrobotics-research/
qibullet

4https://pypi.org/project/qibullet/

https://github.com/softbankrobotics-research/qibullet
https://github.com/softbankrobotics-research/qibullet
https://travis-ci.org/softbankrobotics-research/qibullet
https://travis-ci.org/softbankrobotics-research/qibullet
https://pypi.org/project/qibullet/


[3] Eric Chown and Michail G. Lagoudakis. The standard platform league.
In RoboCup 2014: Robot World Cup XVIII [papers from the 18th
Annual RoboCup International Symposium, João Pessoa, Brazil, July
15, pages 636–648, 2014.

[4] World Robot Summit. [Online], Available: https:
//worldrobotsummit.org/en/.

[5] NAO Challenge. [Online], Available: https://www.
naochallenge.it/.

[6] Alan Zimmerman. Botlab environment. [Online], Available: https:
//poly.google.com/view/2hWxc7Hk9CJ.

[7] Nathan Koenig and Andrew Howard. Design and use paradigms for
gazebo, an open-source multi-robot simulator. In 2004 IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems (IROS)(IEEE
Cat. No. 04CH37566), volume 3, pages 2149–2154. IEEE, 2004.

[8] Eric Rohmer, Surya PN Singh, and Marc Freese. V-rep: A versatile and
scalable robot simulation framework. In 2013 IEEE/RSJ International
Conference on Intelligent Robots and Systems, pages 1321–1326.
IEEE, 2013.

[9] Olivier Michel. Cyberbotics ltd. webots: professional mobile robot
simulation. International Journal of Advanced Robotic Systems,
1(1):5, 2004.

[10] Emmanuel Pot, Jérôme Monceaux, Rodolphe Gelin, and Bruno
Maisonnier. Choregraphe: a graphical tool for humanoid robot pro-
gramming. In RO-MAN 2009-The 18th IEEE International Symposium
on Robot and Human Interactive Communication, pages 46–51. IEEE,
2009.

[11] Gilberto Echeverria, Nicolas Lassabe, Arnaud Degroote, and Séverin
Lemaignan. Modular open robots simulation engine: Morse. In 2011
IEEE International Conference on Robotics and Automation, pages
46–51. Citeseer, 2011.

[12] Florian Lier and Sven Wachsmuth. Towards an open simulation envi-
ronment for the pepper robot. In Companion of the 2018 ACM/IEEE
International Conference on Human-Robot Interaction, pages 175–
176. ACM, 2018.

[13] Erwin Coumans. Bullet physics engine. Open Source Software:
http://bulletphysics.org, 1(3), 2010.

[14] Erwin Coumans and Yunfei Bai. Pybullet, a python module for
physics simulation for games, robotics and machine learning. http:
//pybullet.org, 2016–2019.

[15] Aldebaran Robotics. Naoqi framework. [Online], Available: http:
//doc.aldebaran.com/2-5/index_dev_guide.html.

[16] Morgan Quigley, Ken Conley, Brian Gerkey, Josh Faust, Tully Foote,
Jeremy Leibs, Rob Wheeler, and Andrew Y Ng. Ros: an open-source
robot operating system. In ICRA workshop on open source software,
volume 3, page 5. Kobe, Japan, 2009.

[17] Tom Erez, Yuval Tassa, and Emanuel Todorov. Simulation tools
for model-based robotics: Comparison of bullet, havok, mujoco, ode
and physx. In 2015 IEEE international conference on robotics and
automation (ICRA), pages 4397–4404. IEEE, 2015.

[18] Havok physics engine. [Online], Available: www.havok.com.
[19] Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics

engine for model-based control. In 2012 IEEE/RSJ International
Conference on Intelligent Robots and Systems, pages 5026–5033.
IEEE, 2012. [Online], Available: www.mujoco.org.

[20] Open Dynamics Engine. [Online], Available: http://ode.org.
[21] PhysX physics engine. [Online], Available: www.geforce.com/

hardware/technology/physx.
[22] Jie Tan, Tingnan Zhang, Erwin Coumans, Atil Iscen, Yunfei Bai,

Danijar Hafner, Steven Bohez, and Vincent Vanhoucke. Sim-to-
real: Learning agile locomotion for quadruped robots. arXiv preprint
arXiv:1804.10332, 2018.

[23] Michel Breyer, Fadri Furrer, Tonci Novkovic, Roland Siegwart, and
Juan Nieto. Comparing task simplifications to learn closed-loop
object picking using deep reinforcement learning. IEEE Robotics and
Automation Letters, 4(2):1549–1556, 2019.

[24] Krzysztof Choromanski, Aldo Pacchiano, Jack Parker-Holder, Jasmine
Hsu, Atil Iscen, Deepali Jain, and Vikas Sindhwani. When random
search is not enough: Sample-efficient and noise-robust blackbox
optimization of rl policies. arXiv preprint arXiv:1903.02993, 2019.

[25] Eloı̈se Dalin, Pierre Desreumaux, and Jean-Baptiste Mouret. Learning
and adapting quadruped gaits with the” intelligent trial & error”
algorithm. 2019.

[26] Andy Zeng, Shuran Song, Johnny Lee, Alberto Rodriguez, and
Thomas Funkhouser. Tossingbot: Learning to throw arbitrary objects
with residual physics. arXiv preprint arXiv:1903.11239, 2019.

[27] Willow Garage. Universal robot description format (urdf). Http://Www.
ros. org/urdf/, 2009, 2009.

[28] Tsuneo Yoshikawa. Manipulability of robotic mechanisms. The
international journal of Robotics Research, 4(2):3–9, 1985.

[29] Alban Laflaquière and Verena V Hafner. Self-supervised body image
acquisition using a deep neural network for sensorimotor prediction.
arXiv preprint arXiv:1906.00825, 2019.

https://worldrobotsummit.org/en/
https://worldrobotsummit.org/en/
https://www.naochallenge.it/
https://www.naochallenge.it/
https://poly.google.com/view/2hWxc7Hk9CJ
https://poly.google.com/view/2hWxc7Hk9CJ
http://pybullet.org
http://pybullet.org
http://doc.aldebaran.com/2-5/index_dev_guide.html
http://doc.aldebaran.com/2-5/index_dev_guide.html
www.havok.com
www.mujoco.org
http://ode.org
www.geforce.com/hardware/technology/physx
www.geforce.com/hardware/technology/physx

	I INTRODUCTION
	II PHYSICS ENGINE
	III SIMULATOR
	III-A Robot model
	III-B Interface
	III-C Control and Sensing
	III-D Scenarios

	IV EXPLOITATION
	V CONCLUSION
	References

