
Indexing Methods for Approximate String Matching

Gonzalo Navarro� Ricardo Baeza�Yates� Erkki Sutineny Jorma Tarhioz

Abstract

Indexing for approximate text searching is a novel problem receiving much attention because of
its applications in signal processing� computational biology and text retrieval� to name a few�
We classify most indexing methods in a taxonomy that helps understand their essential features�
We show that the existing methods� rather than completely di�erent as they are regarded� form
a range of solutions whose optimum is usually somewhere in between�

� Introduction

Approximate string matching is about �nding a pattern in a text where one �or both� of them has
su�ered some kind of undesirable corruption� This has a number of applications� such as retrieving
musical passages similar to a sample� �nding DNA subsequences after possible mutations� or searching
text under the presence of typing or spelling errors�

The problem of approximate string matching is formally stated as follows� given a long text T����n
of length n and a comparatively short pattern P����m of length m� both sequences over an alphabet �
of size �� �nd the text positions that match the pattern with at most k �errors	�

Among the many existing error models we focus on the popular Levenshtein or edit distance� where
an error is a character insertion� deletion or substitution� That is� the distance d�x� y� between two
strings x and y is the minimum number of such errors needed to convert one into the other� and we
seek for text substrings that are at distance k or less from the pattern� Most of the techniques can be
easily adapted to other error models� We use � 
 k�m as the error ratio� so � � � � ��

There are numerous solutions to the on�line version of the problem� where the pattern is pre

processed but the text is not ����� They range from the classical O�mn� worst
case time to the optimal
O��k�log�m�n�m� average case time� Although very fast on
line algorithms exist� many applications
handle so large texts that no on
line algorithm can provide acceptable performance�

An alternative approach when the text is large and searched frequently is to preprocess it� build a
data structure on the text �an index� beforehand and use it to speed up searches� Many such indexing
methods have been developed for exact string matching ���� but only one decade ago doing the same
for approximate string matching was an open problem ����

Copyright ���� IEEE� Personal use of this material is permitted� However� permission
to reprint�republish this material for advertising or promotional purposes or for creating
new collective works for resale or redistribution to servers or lists� or to reuse any copy�
righted component of this work in other works must be obtained from the IEEE�
Bulletin of the IEEE Computer Society Technical Committee on Data Engi�

neering

�Dept� of Computer Science� University of Chile� Supported in part by Fondecyt grant ��������
yDept� of Computer Science� University of Joensuu� Finland�
zDept� of Computer Science and Engineering� Helsinki University of Technology� Finland�

�



During the last decade� several proposals to index a text to speed up approximate searches have
been presented� No attempt has been done up to now to show them under a common light� This is our
purpose� We classify the existing approaches along two dimensions� data structure and search method�

Four di�erent data structures are used in the literature� They all serve roughly the same purposes
but present di�erent space�time tradeo�s� We mention them from more to less powerful and space
demanding� Su�x trees permit searching for any substring of the text� Su�x arrays permit the same
operations but are slightly slower� q�Grams permit searching for any text substring not longer than q�
q�Samples permit the same but only for some text substrings�

On the other hand� there are three search approaches� Neighborhood generation generates and
searches for� using an index� all the strings that are at distance k or less from the pattern �their
neighborhood�� Partitioning into exact searching selects patterns substrings that must appear unaltered
in any approximate occurrence� uses the index to search for those substrings� and checks the text areas
surrounding them� Assuming that the errors occur in the pattern or in the text leads to radically
di�erent approaches� Intermediate partitioning extracts substrings from the pattern that are searched
for allowing fewer errors using neighborhood generation� Again we can consider that errors occur in
the pattern or in the text�

Table � illustrates this classi�cation and places the existing schemes in context�

Search Approach
Data Structure Neighborhood Partitioning into Intermediate

Generation Exact Searching Partitioning
Errors in Text Errors in Pattern Errors in Text Errors in Pattern

���� Jokinen �
Su�x Tree Ukkonen �� ���� Shi ��

�	
� Ukkonen �

��� Cobbs ��

Su�x Array ��� Gonnet �� ���� Navarro �
Baeza
Yates ��

���� Jokinen �
Q
grams n�a Ukkonen �� ���� Navarro � Myers �� ��
�

��� Holsti � Baeza
Yates ��
Sutinen ��

Q
samples n�a �	�� Sutinen � n�a ���� Navarro n�a
Tarhio �� et al� 	���

Table �� Taxonomy of indexes for approximate text searching� A �n�a	 means that the data structure
is unsuitable to implement that search approach because not enough information is maintained�

� Basic Concepts

��� Su�x Trees

Su�x trees ��� are widely used data structures for text processing� Any position i in a text T de�nes
automatically a su�x of T � namely Ti���� A su�x trie is a trie data structure built over all the su�xes
of T � Each leaf node points to a su�x� Each internal node represents a unique substring of T that
appears more than once� Every substring of T can be found by traversing a path from the root�
possibly continuing the search directly in the text if a leaf is reached� In practice a su�x tree� obtained

�



by compressing unary trie paths� is preferred because it yields O�n� space and O�n� construction time
���� ��� and o�ers the same functionality� Figure � illustrates a su�x trie�

6
4

"c"

10

3
"$"

11 7 108 1 4 6 2 9 5 3

rba a c a d a b r a

1 2 3 4 65 7 8 9 10 11

rba a c a d a b r a

1 2 3 4 65 7 8 9 10 11
Text

"b"
"r" "a"

"r"

"d" 7

"c"
5

2

9
"$"

"c"

"a"

"a""r"
8

1
"c"

"$"

11

"b"

"d"

"$"

"c"

"a"

Suffix Trie

Suffix Array

Figure �� The su�x trie and su�x array for a sample text� The ��	 is a special marker to denote the
end of the text and is lexicographically smaller than the other characters�

To search for a simple pattern in the su�x trie� we just enter it driven by the letters of the pattern�
reporting all the su�x start points in the subtree of the node we arrive at� if any� E�g� consider
searching for �abr� in the example� So the search time is the optimal O�m�� A weak point of the
su�x tree is its large space requirement� worsened by the absence of practical schemes to manage it in
secondary memory� Among the many attempts to reduce this space� the best practical implementations
still require about � times the text size ��� and do not handle well secondary memory�

��� Su�x Arrays

The su�x array ���� �� is a weak version of the su�x tree� which requires much less space �one pointer
per text position� i�e� about � times the text size� and poses a small penalty over the search time�

If the leaves of the su�x tree are traversed in left
to
right order� all the text su�xes are retrieved
in lexicographical order� A su�x array is simply such an ordered array containing all the pointers to
the text su�xes� Figure � illustrates�

The su�x array can be built directly in O�n logn� worst case time and O�n log logn� average time
����� For secondary memory� a more practical O�n� logM � M� time algorithm ��� is preferable� where
M is the amount of main memory available�

Su�x arrays can simulate by binary searching almost every algorithm on su�x trees� at an O�logn�
time penalty factor� This is because each su�x subtree corresponds to a su�x array interval� so moving
to a child node is equivalent to reducing the current su�x array interval by doing two binary searches�
For instance� exact searching for a pattern takes O�m logn� time using this approach�

��� Q�grams and Q�samples Indexes

Yet a weaker �and less space demanding� scheme is to limit the length of the strings that can be directly
found in the index� A q
gram index allows retrieval of text strings of length at most q�

In a q
gram index� every di�erent text q
gram �substring of length q� is stored� For each q
gram�
all its positions in the text �called occurrences� are stored in increasing text order�

An even less space demanding alternative is a q
sample index� where only some text q
grams �called
text q
samples� are stored� and therefore not any text q
gram can be found� The text q
samples� unlike
the text q
grams� do not overlap� and there may even be some space between each pair of samples�

�



This severely restricted index is attractive for its low space requirements� and it still permits searching
for long strings� as we see later�

A q
grams or q
samples index can be built in linear time� although for large texts a more practical
O�n log�n�M�� time algorithm can be used� Depending on q the index takes from ��� to � times the
text size for reasonable retrieval performance�

��� Computing Edit Distance

The basic algorithm to compute the edit distance between two strings x and y is based on dynamic
programming �see ������ To compute d�x� y� a matrix C����jxj�����jyj is �lled� where Cj�i 
 d�x����j � y����i��
This is computed as C��� 
 � and

Cj�i 
 min�Cj���i�� � ��xj � yi�� Cj���i� �� Cj�i��� ��

where ��a� b� is zero for a 
 b and � otherwise� and C���i 
 Cj��� 
�� The minimization accounts for
the three allowed operations� substitutions� deletions and insertions� At the end� Cjxj�jyj 
 d�x� y�� The
matrix is �lled� e�g�� column
wise to guarantee that necessary cells are already computed� The table in
Figure � �left� illustrates this algorithm to compute d��survey�� �surgery���

The algorithm is O�jxjjyj� time in the worst and average case� The space required is only O�jxj� in
a column
wise processing because only the previous column must be stored to compute the new one�

� Neighborhood Generation

��� The Neighborhood of the Pattern

The number of strings that match a pattern P with at most k errors is �nite� as the length of any
such string cannot exceed m� k� We call this set of strings the �k
neighborhood	 of P � and denote it
Uk�P � 
 fx � ��� d�x� P � � kg�

The idea of this approach is� in essence� to generate all the strings in Uk�P � and use an index to
search for their text occurrences �without errors�� Each such string can be searched for separately� as
in ����� or a more sophisticated technique can be used �see next��

The main problem with this approach is that Uk�P � is quite large� Good bounds ���� ��� show an
exponential growth in k� e�g� jUk�P �j 
 O�mk�k� ����� So this approach works well for small m and k�

��� Backtracking

The su�x tree or array can be used to �nd all the strings in Uk�P � that are present in the text ��� ����
Since every substring of the text �i�e� every potential occurrence� can be found by traversing the su�x
tree from the root� it is su�cient to explore every path starting at the root� descending by every branch
up to where it can be seen that that branch cannot start a string in Uk�P ��

We explain the algorithm on a su�x trie� We compute the edit distance between our pattern x 
 P

and every text string y that labels a path from the root to a trie node N � We start at the root with the
initial column Cj�root 
 j �Section ��� with i 
 �� and recursively descend by every branch of the trie�
For each edge traversed we compute a new column from the previous assuming that the new character
of y is that labeling the edge just traversed�

Two cases may occur at node N � �a� We may �nd that Cm�N � k� which means that y � Uk�P ��
and hence we report all the leaves of the current subtree as answers� �b� We may �nd that Cj�N � k
for every j� which means that y is not a pre�x of any string in Uk�P � and hence we can abandon this

�



branch of the trie� If none of these two cases occur� we continue descending by every branch� If we
arrive at a leaf node� we continue the algorithm of Section ��� over the text su�x pointed to�

Figure � illustrates the process over the path that spells out the string �surgery�� The matrix
can be seen now as a stack �that grows to the right�� With k 
 � the backtracking ends indeed after
reading �surge� since that string matches the pattern �case �a��� If we had instead k 
 � the search
would have been pruned �case �b�� after considering �surger�� and in the alternative path shown� after
considering �surga�� since in both cases no entry of the matrix is � ��

5
4
3
2
2
2
2

s

u

r

g

e

r

y

a

s u r g e r y

� � � � � � � �

s � � � � � � � �

u � � � � � � � �

r � � � � � � � �

v � � � � � � � �

e � � � � � � � �

y � � � � � � � �

Figure �� The dynamic programming algorithm run over the su�x trie� We show only one path and
one additional link�

Some improvements to this algorithm ���� ��� �� avoid processing some redundant nodes at the cost
of a more complex node processing� but their practicality has not been established� This method has
been used also to compare a whole text against other or against itself ����

� Partitioning into Exact Search

Each approximate occurrence of a pattern contains some pattern substrings that match without errors�
Hence� we can derive su�cient conditions for an approximate match based on exact matching of one or
more carefully selected pattern pieces� These pieces are searched for without errors� and the text areas
surrounding their occurrences are veri�ed for an approximate occurrence of the complete pattern� This
technique is called ��ltration	 �����

In indexed searching� some kind of index is used to quickly locate the exact occurrences of the
selected pattern pieces� and a classical on
line algorithm is used for veri�cation� A general limitation
of �ltration methods is that there is always a maximum error ratio � up to where they are useful� as
for larger error levels the text areas to verify cover almost all the text�

A general lemma is useful to unify the many existing variants�

Lemma �� Let A and B be two strings such that d�A�B� � k� Let A 
 A�x�A�x����xk�s��Ak�s� for
strings Ai and xi and for any s � �� Then� at least s strings Ai� � � �Ais appear in B� Moreover� their
relative distances inside B cannot di�er from those in A by more than k�

This is clear if we consider the sequence of at most k edit operations that convert A into B� As
each edit operation can a�ect at most one of the Ai�s� at least s of them must remain unaltered� The

�



extra requirement on relative distances follows by considering that k edit operations cannot produce
misalignments larger than k�

Two main branches of algorithms based on the lemma exist� di�ering essentially in whether the
errors are assumed to occur in the pattern or in the text�

��� Errors in the Pattern

This technique is based on the application of Lemma � under the setting P 
 A� xi 
 �� That is� the
pattern is split in k� s pieces� and hence s of the pieces must appear inside any occurrence� Therefore�
the k � s pieces are searched for in the text and the text areas where s of those pieces appear under
the stated distance requirements are veri�ed for a complete match�

Using the data structures of Section � the time to search for the pieces in the index is O�m� or
O�m logn�� but the checking time dominates� The case s 
 �� proposed in ����� shows an average time
to check the candidates of O�m�kn��m��k����� The case s � � is proposed in ���� without any analysis�
It is not clear which is better� If s grows� the pieces get shorter and hence there are more matches to
check� but on the other hand� forcing s pieces to match makes the �lter stricter �����

Note that� since we cannot know where the pattern pieces can be found in the text� all the text
positions must be searchable� The technique described next� instead� works on a q
samples index� The
price of this smaller index is that in it tolerates lower error ratios�

��� Errors in the Text

Assume now that the errors occur in the text� i�e� A is an occurrence of P in T � We extract substrings
of length q at �xed text intervals of length h � q�

Those q
samples correspond to the Ai�s of Lemma �� and the space between q
samples to the xi�s�
What the lemma ensures is that� inside any occurrence of P containing k� s text q
samples� at least s
of them appear in P at about the same positions ��k�� Now� for the lemma to hold� we need to ensure
that any occurrence of P in T contains at least k� s text q
samples� i�e� h � b�m�k� q�����k� s�c�

At search time� all the m�q�� �overlapping� pattern q
grams are extracted and searched for in the
index of text q
samples� When s pattern q
grams match in the text at the proper distances� the text
area is veri�ed for a complete match� This idea is presented in ����� and earlier versions in ���� �� ����

Let us discuss the best value of q� We want it to be small to avoid a very large set of di�erent
q
samples� We want it to be large to minimize the amount of veri�cation� Some analyses ���� show
that q 
 ��log� n� is the optimal value� On the other hand� little has been said about the best s value�
except that a larger s may trigger less veri�cations�

� Intermediate Partitioning

We present now an approach that lies between the two previous� We �lter the search by looking for
pattern pieces� but those pieces are large and still may appear with errors in the occurrences� However�
they appear with less errors� and therefore we use neighborhood generation to search for them� A new
lemma is useful here�

Lemma �� Let A and B be two strings such that d�A�B� � k� Let A 
 A�x�A�x����xj��Aj � for strings

Ai and xi and for any j � �� Let ki be any set of nonnegative numbers such that
Pj

i�� ki � k � j � ��
Then� at least one string Ai appears with at most ki errors in B�

Proof is easy� if every Ai needs more than ki errors to match in B� then the total distance cannot
be less than �k � j � �� � j 
 k � �� Note that in particular we can choose ki 
 bk�jc for every i�

�



��� Errors in the Pattern

Search approaches based on this method have been proposed in ���� ���� Split the pattern in j pieces�
for some j that we discuss soon� Use neighborhood generation to �nd the text positions where those
pieces appear� allowing bk�jc errors� Then� for each such text position� check with an on
line algorithm
the surrounding text� The main question is now which j value to use�

In ����� the pattern is partitioned because they use a q
gram index� so they use the minimum j

that gives short enough pieces �they are of length m�j�� In ���� the index can search for pieces of any
length� and the partitioning is done in order to optimize the search time�

Consider the evolution of the search time as j moves from � �neighborhood generation� to k � �
�partitioning into exact search�� We search for j pieces of length m�j with k�j errors� so the error level
� stays about the same for the subpatterns� As j moves to �� the cost to search for the neighborhood
of the pieces grows exponentially with their length� as shown in Section ���� As j moves to k � � this
cost decreases� reaching even O�m� when j 
 k � �� So� to �nd the pieces� a larger j is better�

There is� however� the cost to verify the occurrences too� Consider a pattern that is split in j
pieces� for increasing j� Start with j 
 �� Lemma � states that every occurrence of the pattern involves
an occurrence of at least one of its two halves �with k�� errors�� although there may be occurrences
of the halves that yield no occurrences of the pattern� Consider now halving the halves �j 
 ��� so
we have four pieces now �call them �quarters	�� Each occurrence of one of the halves involves an
occurrence of at least one quarter �with k�� errors�� but there may be many quarter occurrences that
yield no occurrences of a pattern half� This shows that� as we partition the pattern in more pieces�
more occurrences are triggered� Hence� the veri�cation cost grows from zero at j 
 � to its maximum
at j 
 k � �� The tradeo� is illustrated in Figure ��

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

�
�
�
�

��
��
��

��
��
��

�
�
�

�
�
�
�
�
�
�

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���

����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

�
�
�
�

search

�
�
�
�

verify

Neighborhood generation Intermediate partitioning Partitioning into exact search

Figure �� Intermediate partitioning can be seen as a tradeo� between neighborhood generation and
partitioning into exact search�

In ���� it is shown that the optimal j is ��m� log� n�� yielding a time complexity of O�n��� for
� � 	 � �� This is sublinear �	 � �� for � � �� e�

p
�� a well known limit for any �ltration approach

���� �although the e is pessimistic and is replaced by � in practice�� Interestingly� the same results
are obtained in ���� by setting q 
 ��log� n�� The experiments in ���� show that this intermediate
approach is by far superior to both extremes�

��� Errors in the Text

This time we consider an occurrence containing a sequence of j q
samples� which must be chosen at
steps of h � b�m� k � q � ���jc� By Lemma �� one of the q
samples must appear in the pattern with
bk�jc errors at most� Moreover� if every q
sample i appears in the pattern block Qi 
 Phi�k��hi�q���k

with ki errors� then it must hold
P
ki � k�

This method ���� ��� searches every block Qi in the index of q
samples using backtracking� so as to
�nd the least number of errors to match each text q
sample inside Qi� using a slight modi�cation to

�



the algorithm of Section ���� If a zone of consecutive samples is found whose errors add up at most k�
the area is veri�ed with an on
line algorithm�

To permit e�cient neighborhood searching� we need to limit the maximum error level to permit�
Permitting q errors may be too expensive� as every text q
sample will be considered� Rather� we choose
q � e � bk�jc and assume that every text q
sample indeed matches with e� � errors� We search the
pattern blocks permitting only e errors� Every q
sample found with ki � e errors changes its estimation
from e � � to ki� otherwise it stays at the optimistic bound e � ��

There is a tradeo� here� If we use a small e value� then the search of the e
neighborhoods will be
cheaper� but as we have to assume that the text q
samples not found have e�� errors� some unnecessary
veri�cations will be carried out� On the other hand� using larger e values gives more exact estimates
of the actual number of errors of each text q
sample and hence reduces unnecessary veri�cations in
exchange for a higher cost to search the e
environments�

Not enough work has been done on obtaining the optimal e� In ���� it is mentioned that� as the
cost of the search grows exponentially with e� the minimal e 
 bk�jc can be a good choice� It is also
shown experimentally that the scheme tolerates higher error levels than the corresponding partitioning
into exact search�

� Conclusions

We have considered indexing mechanisms for approximate string matching� a novel and di�cult problem
arising in several areas� We have classi�ed the di�erent approaches using two coordinates� the sup

porting data structure and the search approach� We have shown that the most promising alternatives
are those that look for an optimum balance point between exhaustively searching for neighborhoods of
pattern pieces and the strictness of the �ltration produced by splitting the pattern into pieces�

A separate issue not covered in this paper is indexing schemes for approximate word matching on
natural language text� This is a much more mature problem with well established solutions�

An approach that is totally di�erent from the existing ones and that has only rarely been attempted
�e�g� in ���� is to use the edit distance to give the text the structure of a metric space� It is not clear
how competitive could be the results of such an index� nor which are the elements that could form the
metric space� Radically innovative ideas are welcome in this area�

References

��� A� Apostolico and Z� Galil� Combinatorial Algorithms on Words� Springer
Verlag� �����

��� R� Baeza
Yates� Text retrieval� Theory and practice� In ��th IFIP World Computer Congress�
volume I� pages �������� Elsevier Science� �����

��� R� Baeza
Yates and G� Gonnet� A fast algorithm on average for all
against
all sequence matching�
In Proc� �th Symp� on String Processing and Information Retrieval �SPIRE	

�� IEEE CS Press�
����� Previous version unpublished� Dept� of Computer Science� Univ� of Chile� �����

��� E� Bugnion� T� Roos� F� Shi� P� Widmayer� and F� Widmer� Approximate multiple string matching
using spatial indexes� In Proc� �st South American Workshop on String Processing �WSP	
���
pages ������ �����

��� A� Cobbs� Fast approximatematching using su�x trees� In Proc� �th Ann� Symp� on Combinatorial
Pattern Matching �CPM	

�� LNCS ���� pages ������ �����

�



��� R� Giegerich� S� Kurtz� and J� Stoye� E�cient implementation of lazy su�x trees� In Proc� �rd
Workshop on Algorithm Engineering �WAE	

�� LNCS ����� pages ������ �����

��� G� Gonnet� A tutorial introduction to Computational Biochemistry using Darwin� Technical
report� Informatik E�T�H�� Zuerich� Switzerland� �����

��� G� Gonnet� R� Baeza
Yates� and T� Snider� Information Retrieval� Data Structures and Algorithms�
chapter �� New indices for text� Pat trees and Pat arrays� pages ������ Prentice
Hall� �����

��� N� Holsti and E� Sutinen� Approximate string matching using q
gram places� In Proc� �th Finnish
Symp� on Computer Science� pages ������ Univ� of Joensuu� �����

���� P� Jokinen and E� Ukkonen� Two algorithms for approximate string matching in static texts�
In Proc� �nd Ann� Symp� on Mathematical Foundations of Computer Science �MFCS	
��� pages
�������� �����

���� U� Manber and E� Myers� Su�x arrays� a new method for on
line string searches� SIAM J� on
Computing� �������������� �����

���� E� McCreight� A space
economical su�x tree construction algorithm� J� of the ACM� ����������
���� �����

���� E� Myers� A sublinear algorithm for approximate keyword searching� Algorithmica� ������������
���� ����� Earlier version in Tech� report TR
��
��� Dept� of CS� Univ� of Arizona� �����

���� G� Navarro� A guided tour to approximate string matching� ACM Comp� Surv�� ������������ �����

���� G� Navarro and R� Baeza
Yates� A practical q
gram index for text retrieval allowing errors� CLEI
Electronic Journal� ����� ����� http���www�clei�cl� Earlier version in Proc� CLEI	
��

���� G� Navarro and R� Baeza
Yates� A hybrid indexing method for approximate string matching� J� of
Discrete Algorithms� ������������� ����� Hermes Science Publishing� Earlier version in CPM	

�

���� G� Navarro� E� Sutinen� J� Tanninen� and J� Tarhio� Indexing text with approximate q
grams�
In Proc� ��th Ann� Symp� on Combinatorial Pattern Matching �CPM	������ LNCS ����� pages
�������� �����

���� F� Shi� Fast approximate string matching with q
blocks sequences� In Proc� �rd South American
Workshop on String Processing �WSP	
��� pages �������� Carleton University Press� �����

���� E� Sutinen and J� Tarhio� On using q
gram locations in approximate string matching� In Proc�
�rd European Symp� on Algorithms �ESA	

�� LNCS ���� pages �������� �����

���� E� Sutinen and J� Tarhio� Filtration with q
samples in approximate string matching� In Proc� �th
Ann� Symp� on Combinatorial Pattern Matching �CPM	
��� LNCS ����� pages ������ �����

���� T� Takaoka� Approximate pattern matching with samples� In Proc� 
th Int	l� Symp� on Algorithms
and Computation �ISAAC	
��� LNCS ���� pages �������� �����

���� E� Ukkonen� Finding approximate patterns in strings� J� of Algorithms� ���������� �����

���� E� Ukkonen� Approximate string matching over su�x trees� In Proc� �th Ann� Symp� on Combi�
natorial Pattern Matching �CPM	
��� LNCS ���� pages �������� �����

���� E� Ukkonen� Constructing su�x trees on
line in linear time� Algorithmica� �������������� �����

�


