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Planning

Data Networks
Finance-Economics
VLSI Design

Pattern Recognition
Data Mining
Ressource Allocation
Machine Learning
Signal Processing
Tomography

Human Behavior....

OPTIMIZATION APPEARS TO BE PRESENT "ALMOST”
EVERYWHERE....



Outline of the Talk l

Ideas and Principles
Constrained Problems: Difficulties
Convexity and Duality: A Working Horse in Optimization

Some Fundamental/Useful Optimization Models

hodhddd

Devising Optimization Algorithms
Convergence and Complexity issues
Basic Iterative Schemes for Unconstrained Problems

Some Classical and Modern Algorithms for Constrained Prob-
lems



History of Optimization....

Fermat (1629): Unconstrained Minimization Principle
...+160...Lagrange (1789) Equality Constrained Problems (Mechanics)

Calculus of Variations, 18-19th Century [Euler, Lagrange, Legendre,
Hamilton...]

...+150...Karush (1939), Fritz-John (47), Kuhn-Tucker (1951)

KKT Theorem for Inequality Constraints: Modern Optimization Theory
Engineering Applications (1960)

Optimal Control Bellman, Pontryagin...

Major Algorithmic Developments (50’s with LP) and 60-80’s for NLP

Polynomial Interior Points Methods for Convex Optimization Nesterov-
Nemirovsky (1988)

Combinatorial Problems via continuous approximations 90’s

....More Theory, Algorithmic and much more applications .... Ayoung,
and vibrant area of research.



General Formulation: Nonlinear Programming

(O) minimize{f(x): € X NC}

X C R™ = n-dimensional Euclidean space, (implicit or simple constraints)
C' Is a set of explicit constraints described by constraints

C={reR":g;i(x) < 0,1=1,...m,

hz(a:) — O,i: 1,...,p}.

All the functions in problem (O) are real valued functions on R", and the
set X can describe more abstract constraints of the problem.

Very Important Special Case: Unconstrained Problem XNC=R"
(U) minimize{f(x): x € R"}

Many (if not most) methods for constrained problems based on solving
some type of problem (U).



Definitions and Terminology

(O) minimize{f(x): x € XNC}

e Apointxz € X N C is called a feasible solution of (O).

e An optimal solution is any feasible point where the local or global min-
imum of f relative to X N C'is actually attained.

Definition

f(x), Vo € Ne(z™)
f(x), Vo € R"

2™ local mininum f(z™)

IA A

z* global minimum f(z™)

Note: There are also "'max” problems...But maxF = — min[—F]



How to Solve an Optimization Problem?

e Analytically/Explicitly: Very rarely....or Never....

e We try to generate an lterative-Descent Algorithm  to approximately
solve the problem to a prescribed accuracy.

Algorithm: amap A : x — y (start with x to get new point y)
lterative: generate a sequence of pts calculated on prior point or points
Descent: Each new point y is such that f(y) < f(x)



A Powerful Algorithm!

Setk =0

While ¥ € D = {set of desisable Points} Do {

T = A(")
k — k+1}
Stop

Expected Output(s): {z*} is a minimizing sequence: as k — oo

o f(zF) — fs, (optimal value)

e or/and even more, z*¥ — z* (optimal solution)



Some Basic Questions

How do we pick the initial starting point?
How to construct A so that z* converges to optimal z*?
How do we stop the algorithm?

How close is the approximate solution to the optimal one? (that we do
not know!)

How sensitive is the whole process to data perturbations?
How fast the algorithm converges to optimality?

What is the computational cost? The complexity ?
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Emerging Topics and Tools

To answer these questions, we need an appropriate mathematical founda-
tion. For example:

e Existence of optimal solutions

e Optimality conditions

e Convexity and Duality

e Convergence and Numerical Analysis

e Error and Complexity Analysis

While each algorithm for each type of problem will often require a specific
analysis (exploiting special structures of the problem), the above tools will
remain essential and fundamental.
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Optimality for Unconstrained Minimization
(U) inf{f(z): € R"} f:R"™— Risasmooth function.

Fermat Principle Let z* € R"™ be a local minimum. Then,

A& Vf(z®) =0, Zero Slope

This is a First Order Necessary condition

Second Order Necessary Condition: Nonnegative curvature at x

The Hessian Matrix V2 f(z*) = 0 positive semidefinite

Sufficient conditions for ™ to be a local min.
Replace V2f(x*) = 0 by V2f(z*) »= O

Whenever f is assumed convex , then & becomes a sufficient condition
for £* to be a global minimum for f.
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Convexity

S C R™is convex if the line segment joining any two different points of S
IS contained in it:

Ve,y €S, VA e [0,1] = X+ (1-XNyeS

f .S — Risconvexif forany z,y € S and any X € [0, 1],

FOz+(1=Ny) <Af(z) + (1 =) f(y)

A Key Fact: Local Minima are also Global under convexity

Convexity plays a fundamental role in optimization
Even in Non convex problems!
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Equality constraints:Lagrange Theorem

(E) min{f(x): h(x) =0, z € R"}
with f : R" - R, h : R" — RP,

Lagrange Theorem (necessary conditions) Let £* be a local minimum
for problem (E). Assume:

(A) {Vhi(z™),...,Vhp(a™)} are linearly independent.

Then there exists a unique y* € RP satisfying:

b
Vi) + > yiVhi(z*) = 0.
k=1

A system of (n + p) nonlinear equations in (n 4 p) variables (z*, y*)
Inequality constraints lead to more complications....
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Inequality Constraints: The Lagrangian
(P) fv:=inf{f(z): g(z) <0, z € R"}
with f : R® — R, ¢ : R® — R™ are given data.
We assume that there exists a feasible solution for (P) and f« € R.

Observation : Problem (P) is equivalent to

it sup{7(2) + (y.o(x)

which leads to the Lagrangian associated with (P) L : R™ x R"_”'ljf — R :

L(z,y) = f(x) + (y,9(x)) = f(x) + D yigi(z).
=1

Hidden in this equivalent min-max formulation of (P) is another problem
called the DUAL. This in turn is also at the origin of optimality conditions.

Definition A vector y* € R™ is called a Lagrangian multiplier for (P) if

y* >0, and fx = inf{L(z,y*) : x € R"}
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Lagrangian Duality

L(z,\) = f(z) + Z vigi(x).

=1
and

(P) — Inf sup L(x,vy)
res y€R+

Suppose we can reverse the inf sup operations , that is consider

sup inf L(x,vy)
yERi& xzeC

Define the Dual Function:
h(y) := im;L(af;,y), domh ={y € R™: h(y) > —oo}.
re
and the Dual Problem:

(D) hy:=sup{h(y) :y € RENndomh}

Note: In general the dual problem consists of simple nonnegativity con-
straints. But, to avoid h(-) to be —oo, additional constraints might also
emerge through y € dom h.
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Dual problem Properties
The dual Problem Uses the same data

(D)  hs= SL;p{h(y) ry € REENndomh}, h(y) = igf L(x,y)

Properties of (P)-(D)
e Dual is always convex (ax max of concave func.)
e Weak duality holds:  f« > hs« for any feasible pair (P)-(D)

Valid for any optimization problem. No convexity assumed or/and, any
other assumptions!

17



Duality: Key Questions for the pair (P)-(D)

fe =nf{f(z) 1 g(x) <O, z € R"}; hx = supy{h(y) : y € R}

e Zero Duality Gap: when fy = hx7
e Strong Duality: when inf /sup attained?
e Structure/Relations of Primal-Dual Optimal Sets/Solutions

Convex data + a Constraint Qualification,on constraints e.g.,

dJzeR": ¢g(Z) <O

deliver the answers.

Linear equality constraints  can also be treated easily.

Proof based on a simple and powerful geometric argument: Any point out-
side a closed convex set can be separated by a hyperplane.
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An Example: Least Squares Optimization

(P)  min|lAz —b||® <= min{[|z[|*: Az —b= 2}

(D)  max{||b|* — |ly —b]|?: ATy =0}

Strong Duality holds : min(P) = max(D)

(distance to subspace R(A))? + (distance to N(A41))? = ||v]|?
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An Example: Least Squares Optimization

(P)  min|lAz —b||® <= min{[|z[|*: Az —b= 2}

(D) max{|[p|* - ly —b|*: ATy =0}

Strong Duality holds : min(P) = max(D)

(distance to subspace R(A))? + (distance to N(A1))? = ||p]|?

...THIS PROVES PYTHAGORAS THEOREM ! I
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Primal-Dual Optimal Solutions

Definition The pair (z*,y*) € S X ]Rfi'} is called a saddle point for L if
L(z*,y) < L(z%,y") < L(z,y"), VxS, Yy € RY.

Proposition (Saddle point characterization)
(z*,y") € S x Rqrf

Is a saddle point for L iff

(@) z* = argmin, . ¢L(z,y") (L-optimality)

(b) z* € S, g(x*) < 0 (Primal feasibility)

(c) y* € R (Dual feasibility)

(d) ¥ g;(z*) =0, : = 1,...,m (Complementarity).

Note that the above is valid with 0-assumptions on the problem’s data!

Proposition (Sufficient condition for optimality) If («*,y*) € S % Rﬁ IS a
saddle point for L, then =* is a global optimal solution for NLP.

Once again this result is very general and holds for any optimization prob-
lem. However for nonconvex problem it is in general difficult to find a saddle
point.
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The KKT Theorem

(P) inf{f(x): g(x) <0, z € R"}

Let ™ be a local minimum for problem (P) and assume that a (CQ) holds.
Then there exists a Lagrange multipier y* € ]R{q_'” s.t.

m
V(™) + ) AiVgi(z*) = 0, [Saddle pt. in =]
i=1
g;(z*) < 0, Vi € [1,m], [Feasibility = Saddle pt. in y*]

yigi(z*) = 0,i=1,...,m.

The system of equations and inequalities is called the KKT system.

With convex data + (CQ), the KKT conditions become necessary and suf-
ficient for global optimality ...Closing the loop....Equiv. to strong duality....
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Useful Convex Models: Conic Problems

min{{c,z) : A(x) = b,z € K}

e /Cis a closed convex cone in some finite dimensional space X
e (-,-) appropriate inner product on X

e Ais alinear map

Example: Linear Programming

X = R", x € R™ decision variables
K = R?i_, the nonnegative orthant
AeR™*" pecR™ ce R"and (-, ) the usual scalar product in R™

....Other Examples...?
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Semidefinite Programming-Primal Dual Forms

min {CT:C : A(x) = 0}
T ER™

gnziqx{—trAOZ L WrA,Z =c¢;, i€ [1,m], Z > 0}
con

Here

™m
A(z) == Ag+ > _ z;A;, each A; € S, = symmetric

1=1

e Primal : z € R"™ decision variables. A(x) > 0 is a linear matrix
inequality.

e Dual in Conic Form: Z € S,, decision variables, I = S;ﬁ' IS the
closed convex cone of p.s.d. matrices, tr trace of a matrix

24



SDP Features and Applications

> Features

e SDP are special classes of convex (nondifferentiable) problems

e Computationally tractable: Can be approximately solved to a desired
accuracy in polynomial time

e Include linear and quadratic programs

e A very active research area since mid 90’s

< Applications—A Short list!

e Combinatorial optimization
e Control theory

e Statistics

e Computational Geometry

e Classification and Clustering problems
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Related conic convex problems

Other models arising in many applications include

e Second order cone programming
e max-determinant optimization problems

e Eigenvalue problems
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Convex Optimization—Summary

e Local minima are global
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Convex Optimization—Summary

e Local minima are global
e Computationally Tractable: Can be approximately solved to a desired
accuracy in polynomial time  [Self-Concordance Theory—Nemirovski-Nesterov]
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Convex Optimization—Summary

e Local minima are global

e Computationally Tractable: Can be approximately solved to a desired
accuracy in polynomial time  [Self-Concordance Theory—Nemirovski-Nesterov]
e Model many more problems than one might think!
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Convex Optimization—Summary

e Local minima are global

e Computationally Tractable: Can be approximately solved to a desired
accuracy in polynomial time  [Self-Concordance Theory—Nemirovski-Nesterov]
e Model many more problems than one might think!

e Enjoy a powerful Duality Theory that can be used to find bounds for hard
problems
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Tractability is a key Issue

e Drawing a line between Easy [Convex]and Hard [Nonconvex] Prob-
lems

e Convexity plays a key role in this distinction.
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Easy/Hard: Example

n
(P1) max{ ) x;: :L’JQ»—szO,j: L,...,n; zjo; =0Vi£jel}
j=1

(P2) inf xqg subject to
m m
Za;j=1, Zaj:vé- = bl,l=1,...,k
(w1 74\
>‘min . Z O7l:17 7k
Im ./,U,é,n
\ah - - - by w0

s e R ZleR™ | = 1,....k
(P1) "looks” much easier than (P2)...
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Easy/Hard: Example

n
(P1) max{z T xJQ»—mij,j:L...,n; rix; =0ViFEjel}
]:

(P2) min{xg : Amin(A(z, z')) > 0, Z a; :B =b1=1,... k, i r; =1}
=1

where A(z, 2!) is affine in zq, 1, . . ., Tm, a:ll, ok

& (P1l) easy formulation but: is as difficult as an optimization problem
can be! Worst case computational effort within absolute inaccuracy 0.5, for
n = 256 is 22°6 ~ 1077 ~ 40!

& (P2) complicated formulation  but: easy to solve! Form = 100,k =
6 —= 701 variables (= 3 times larger) solved in less than 2 minutes for 6
digits accuracy!

convex (P2)[slow " (n,e)] vs. nonconvex (P1) [very fast " (n,e)]
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A Bird’s-Eye View of Classical and Modern Algorithms I
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A Generic Unconstrained Minimization Algorithm
(U) min{f(x): =z € R"}

Start with x € R™ such that V f(x) # 0.

Compute new point z+ = z + ¢d where

e d € R"is adescent direction: {(d, Vf(x)) <O

e t € (0,40) is a stepsize. How far to go in direction d such that for ¢
small one guarantees

f@T) = fz+td) < f(x)

35



Basic Gradient Iterative Schemes

20 € R?, ghtl = ok 4 ¢, Whak

where

wk - o, t, ~ argmin f(zF 4+ twkdFk)
t

o Wk =1 df=—Vf(zF), Steepest Descent Method:
Slow but Globally convergent

o Wk =v27(2¥)~1, Newton's Method; Fast but Locally convergent

e Global Rate of convergence depends on information and topological
properties of V f, V2f.
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Three fundamental algorithms in applications which are
gradient based

e Clustering: The k-means algorithm
e Neuro-computation: The backpropagation (perceptron) algorithm

e The EM (Expectation-Maximization) algorithm in statistical estima-
tion
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Constrained Optimization Algorithms

Richer but much more Difficult....

In most algorithms

e either we will solve a nonlinear system of equations and inequalities

e or we will have to solve a sequence of unconstrained minimization
problems.

e Thus, the importance of having efficient linear algebra packages and
a fast and reliable unconstrained routine.

38



Some Classes of Constrained Optimization Algorithms...

e Penalty and Barrier Methods

e Sequential Quadratic Programming
e Multiplier Methods

e Active set methods

e Dual Methods

e Interior point/primal-dual Methods

e ....and more...



Penalty Methods: Courant 1943, Ablow-Brigham 1955.

(C) min{f(x) : € S CR"}
Idea: Replace (C) by a family of unconstrained problems
(Cy)  min{f(z) +tP(x)} (¢t>0)
rERM
Let

x(t) = argmin{f(x) + tP(x)}

e P(-) > 0and = 0 if and only if x feasible.
P is a Penalty we pay for constraints violation.

e For large ¢t the minimum of (C;) will be in a region where P is small.
We thus expect thatas ¢t — oo :

tP(x(t)) — O
x(t) — x* optimal solution of (C)

40



Examples of Penalty Functions

For Inequality Constraints S = {x :g;(z) <0,i=1,...,m}
m m 2
P(z) = > max(0,g;(z)); P(z) =) max(0,g;(z)) <« smooth

For Equality Constraints S = {z: h;(z) =0,i=1,...,m}

P(z) = [|h(x)]|%, h:R" - R™

41



The Penalty Algorithm
Let O <ty < {tg41, VE with ¢, — oo.

For each k solve x;, = argmin_{f(x) + t,P(z)}.

Convergence

Every limit point of {x,.} is a solution of (C).

42



Barrier Methods: Frish 58, Fiacco-McCormick 68
Similar idea, but acting from the interior (for inequality constraints only!)
Let S :={x:g;(x) <0,i=1,...,m}

Assume S has nonempty interior.

A Barrier function for S is a continuous function s.t.

B(x) — oo as x — boundaryS

B is a barrier on bdyS preventing leaving the feasible region. The con-
strained problem is replaced by the unconstrained

z(e) = argmin{ f(xz) + eB(x)} € intS

Examples:

LC |

B(z)=—)_

i=1 gi('x)’

Bx) = — 3" log(—gi(a))
1=1

43



Barrier Algorithm
Let 0 < 41 < e Vekwitheg, — 0.

For each k solve

xp, = argmin_{ f(x) + ¢ B(x)}.

Convergence Every limit point of {x,.} is a solution of (C).

In both Penalty/Barrier Methods:Compromise

e t(e) must be chosen sufficiently large (small) so that z(¢)(x(g)) will
approach S from the exterior (interior).

e BUT, if t(¢) is chosen too large (small), then lll-Conditionning may
OCCurs.

Avoid IC, donotsend t — oo, — O.
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A Basic Multiplier Method for Equality Constraints

min{f(x) : h(x) =0} h:R" - R™

Lagrangian: L(z,u) = f(z) + vl h(x)

Augmented L: A(z,u,c)) = L(z,u) + 27 1c||h(x)||?
AL = Penalized Lagrangian

Multiplier Method Given {u*, cF}

1. Find z*T1 = argmin{A(z, u*, c¥) : = € R}

2. Update Rule: vFt1 = uF 4 cFh(zFt1)

3. Increase ¢* > 0 if necessary.
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Features of Multipliers Method
e A key Advantage: it is not necessary to increase c* to oo, for conver-
gence (as opposed to "Penalty/Barrier method” )
e As aresult, A is "less subject to ill-conditionning”, and more "robust”.

e The AL depends on c but also on the dual multiplier « : faster conver-
gence can be expected (rather than keeping u constant)

e Extendible to inequality constrained problems
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Multiplier Methods for Inequality Constrained Problems

() min{f(z): gi(z) <0,i=1,...,m}, g:=(g1,---,9m)"

Quadratic Method of Multipliers

A= argmin{L(x, u kekY: ze R™}
L = (WP 4 Fga™Th) 4, (F>0)
with z := max{0, z}, (componentwise)

L(z,u,c) = f(z) + (2¢) " {||(u + cg(@)) 4[| — [|ul|*}

More recent and modern approaches allow for constructing smooth La-
grangians so that Newton’s method can be applied for the unconstrained
minimization.

u
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Interior Point Methods

Idea goes back to Barrier Methods, but within a different methodology, elim-
inating the ill-conditioning drawback.

Basically the idea is to approximately follow the central path generated
within the interior of the corresponding feasible set.

Computation of Central Path
z*(p) = argmin{puc, z) + 5(z)}

Where S is a Self-Concordant Barrier for the feasible set of the given
optimization problem .

e x*(u) remains strictly feasible for every > 0
o x*(n) — x* optimal for u — oo

e Can be computed in polynomial time with Newton method

This relies on the fundamental theory of Selconcordance developed by
Nesterov-Nemirovsky (1990)s. [ldea: to make the convergence analysis
coordinate invariant]
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Interior Point Methods for SC-Convex Problems

For self-concordant convex problems
e |IPM can be proven to be polynomially solvable for a prescribed ac-
curacy e.
e Worst case complexity: # Newton steps < sqguare root of problem size

e Each iteration requires forming gradient, Hessian and solving a
linear system
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Mathematical and Computational Challenges

Convex problems appears in applications more than we (use to) think

Convex optimization can be used to approximate (finding bounds) hard
problems

Convex problems can be solved efficiently, namely with polynomial
time algorithms

Polynomial algorithms are highly sophisticated and require informa-
tions on the Hessians of objective and constraints, often not available.

Require heavy computational cost at each iteration

For large scale problems with no particular structures, ... even ONE
ITERATION cannot be completed...!
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Challenge: to solve very large scale optimization problems
emerging from applied world,
keeping in mind the trade off between

Efficiency versus Practicality

Thus the needs to

e further study potential direct/simple methods (e.qg., first order meth-
ods, using function or/and gradient infos only).

e Produce faster algorithms within these methods
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Conclusion

Thank you for listening!
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