
A Visualization Interface for Document Searching and Browsing

Matthew Carey Frank Kriwaczek Stefan M Rüger

Multimedia Knowledge Management: http://km.doc.ic.ac.uk
Department of Computing, Imperial College

London SW7 2BZ, England

Abstract

We present a text document search engine with several new visual-
ization front-ends that aid navigation through the set of documents
returned by a query (hit documents). Our methods are based on
identifying and selecting keywords on the fly. The choice of key-
words depends not only on the frequency of their occurrence within
hit documents but also on the specificity of their occurrence just
within these hit documents. Keywords are subsequently used to
obtain a sparse document representation and to compute document
clusters using a variant of the buckshot algorithm. One of the vi-
sualization front-ends uses the sparse document representation to
obtain keyword clusters.

We make use of the clustering to group the documents returned
from the search visually, and to label the groups with their most
salient keywords. The different front-ends cater for different user
needs. Two of them can be employed to browse cluster information
as well as to drill down or up in clusters and refine the search using
one or more of the suggested keywords.

CR Categories: H.3.3 [Information Storage and Retrieval]: In-
formation Search and Retrieval—Clustering, Information filter-
ing, Query formulation, Relevance feedback, Selection process;
H.5.2 [Information Interfaces and Presentation]: User Interfaces—
Graphical user interfaces, Interaction styles

Keywords: Information visualization, document clustering, fea-
ture reduction, Sammon map, tree map, radial visualization

1 Introduction

Broad one or two-word searches in conventional search engines are
often plagued by low precision, returning thousands of hit docu-
ments as their output. A common problem with this is that users
may have to sift through much irrelevant material before finding
pertinent documents.

We suggest using a standard full-text search engine, but in addi-
tion computing keywords from the set of hit-document references.
These keywords can assist the user in a variety of ways: informing
about issues related to the query, narrowing down the query with
additional query term suggestions and clustering, displaying and
labelling the hit-document subsets.

In Section 2, we review our method of generating keywords. In
order to be computationally efficient we generate a list of candidate
keywords for each document at index time. This list is available at
query time without having to access the original documents. Three
criteria are applied for keyword selection: they must be of general
potential interest, be specific for the hit-document set and be of
discriminative power within this set. In our document set of around
550,000 documents the query “computer” will produce keywords
like “software”, “UNIX”, “IBM” or “users”.

When clustering documents from the hit-document set, we make
use of a sparse document representation using keyword histogram
vectors. Not only does this alleviate the curse of dimensionality that
comes with the otherwise popular word histogram representations
but it also reduces the computing time significantly.

Section 3 describes the technical components and interaction of
the whole search engine with its Information Navigator front-end,
while Section 4 details three graphical interfaces that make use of
the keyword-document matrix. These three interfaces are alterna-
tive views of the traditional ranked-list representation (see Fig 2).

Our thesis is that these graphical cluster-based representations
shift the user’s mental load from slower thought-intensive processes
such as reading to faster perceptual processes such as pattern recog-
nition in a visual display. In our opinion, the one-dimensional
ranked-list metaphor is too restrictive when the hit-documents set is
large. Furthermore, in conventional search engines, the documents
are ultimately ranked with the aim of ordering them according to
relevance to the user. This appears to be overly ambitious as even
advanced ranking algorithms cannot know whether the user prefers
documents about “hardware” or “software” when the query simply
was “computer”. Again, a graphical cluster-based interface might
help users find what they want.

2 Keywords and Clustering

2.1 The Curse of Dimensionality and Dynamically
Computed Keywords

The natural features of text documents are words or phrases, and
a document collection can contain millions of such distinct fea-
tures. The often-used word histogram representation of documents
consequently leads to very high dimensional vectors. The intrinsic
problem with this kind of representations is that any two randomly
picked vectors in a high-dimensional hypercube tend to have a con-
stant distance from each other, no matter what the measure is! As
a consequence, clustering algorithms that are based on document
distances become unreliable.

To give a numeric example for the effect of high dimensionality,
let x, y ∈ [0, 1]n be drawn independently from a uniform distribu-
tion. The expected value of their sum-norm distance isn/3, with a
standard deviation of

√
n/18. For n = 1, 800 (corresponding to

a joint vocabulary of just 1,800 words for a word histogram repre-
sentation) this means a typical distance of|x − y|1 = 600 ± 10.
With increasingn, the ratio between standard deviation and vector

size gets ever smaller, as it scales with1/
√

n. This is a generic sta-
tistical property of high-dimensional spaces with any standard dis-
tance measure, and can be traced down to the law of large numbers.
For a more detailed discussion about the curse of dimensionality
see [19]. Although word histogram document representations are
by no means random vectors, each additional dimension tends not
only to spread the size of a cluster but also to dilute the distance of
two previously well-separated clusters. Hence, it seems prohibitive
involving all semantic features (eg, the words) of a document col-
lection for document clustering.

Even after applying standard feature reduction techniques, the
number of features remains large. In our clustering experiments
with 548,948 mainly US documents1, a candidate keywordhad to
appear in at least three documents and in no more that 33% of all
documents. This resulted in a vocabulary of around 222,872 candi-
date keywords. In our system we store a set of around 200 candidate
keywords per document along with the meta-data of the document,
at index time. A setH of documents returned by a query may still
have a candidate-keyword vocabulary of well over 10,000 different
words. As an example, the four sets of top 500 documents returned
by the queries “mafia,” “Clinton,” “cancer” and “computer” use a
vocabulary of between 14,000 and 17,000 different candidate key-
words.

Document clustering has attracted much interest in the recent
decades, eg [20, 8, 30, 17], and much is known about the impor-
tance of feature reduction in general, eg [14] and, in particular,
clustering [28]. However, little has been done so far to facilitate
feature reduction for document clustering of query results, with the
notable exception of [22]. In contrast to the latter paper, which uses
a tf-idf weighting scheme, we suggest ranking the importance of
each such candidate keywordj with a weight

wj =
hj

dj
· hj log(|H|/hj), (1)

where|H| is the total number of hit documents,hj is the number
of documents inH containing wordj, anddj is the number of doc-
uments in the whole document collectionD containingj. The sec-
ond factor prefers words with medium-valued matched-document
frequencies, while the first factor prefers words that specifically
occur in the matched documents. The highest-ranked words are
meant to be related to the query. Indeed, we have “software”,
“IBM”, “UNIX” etc as the top-ranked words when querying for
“computer”. This seems to be a powerful approach to restrict the
features of the matched documents to the topk ranked words, which
we will call thekeywords. One important aspect is that the features
are computed at query time. Hence, when the above query is re-
fined to “computer hardware”, a completely new set of keywords
emerges automatically.

2.2 Document Representation and Feature Re-
duction

For each matched documenti we create ak-dimensional vectorvi,
whosej-th componentvij is a function of the number of occur-
rencestij of thej-th ranked keyword in the documenti:

vij = log2(1 + tij) · log(|D|/dj) (2)

This is a variation of the tf-idf weight, but which gives less stress
to the term frequencytij . We project the vectorvi onto thek-
dimensional unit sphere obtaining a normalized vectorui that rep-
resents the documenti. We deem the scalar product ofua andub

1We were using the two TREC CDs vol4 and vol5 (see
http://trec.nist.gov) with articles from the Los Angeles Times, the Fi-
nancial Times, the Federal Register, Congress Records and the Foreign
Broadcast Information Service.

(i.e. the cosine of the angle between vectorsva andvb) a sensi-
ble semantic similarity measurebetween two documentsa and b
in the document subsetH returned by a query with respect to the
complete document collectionD.

u may be viewed as a document representation matrix where the
row vectorui is ak-dimensional representation of documenti and
uij is viewed as the importance of keywordj for documenti. In
particular,uij = 0 if and only if documenti does not contain key-
word j. The number of featuresk can be controlled by the ex-
perimenter, and our experiments using the TREC data of human
relevance judgements have shown thatk ≈ 10 yields superior clus-
tering results [19]. Note also that even if only the top ten keywords
are used for the clustering and document representation, we might
still display more keywords on the screen to assist the user in his or
her search.

2.3 Document Clustering

Post-retrieval document clustering has been well studied in the re-
cent years, eg [9, 1, 15, 10, 32]. We deploy a variant of the Buckshot
algorithm [9], a two-phase process to cluster the document repre-
sentationsui in an Euclideank-dim space. Each cluster contains
a certain number of document vectors and is represented by their
normalized arithmetic mean, the so-called centroid vector. In the
first phase, hierarchical clustering with complete linkage operates
on the best-ranked 150 documents (in contrast to the original Buck-
shot method, which would use a random document sample). This
can be done in a fraction of one second CPU time. Hierarchical
clustering has the advantage that one can either prescribe the num-
berN of clusters or let the number of clusters be determined by de-
manding a certain minimum similarity within a cluster. Either way,
once clusters within the top-ranked documents are identified, their
N centroids can be computed and used as a seed for standard iter-
ative clustering of the remaining documents. This algorithm con-
sumes an amount of time linear in the number|D| of documents
and in the numberN of clusters. In our experience, one cycle of
iterative clustering is not only adequate but also preserves the clus-
ter structure given by those top-ranked documents thought to be the
most important. 1,000 documents can thus be clustered in less than
one second on a standard 500 MHz PC.

3 System Overview and Architecture

The system can be divided into three major subsystems: 1) the far
end components that index the data, process and return the results
of the searches, 2) the networking components that transport the
data and 3) the display components that present the data and allow
the user to interact with it. Fig 1 shows these subsystems in more
detail. In the rest of this section we explain the various parts of this
architecture.

At the far search engine end there are three major parts to the
application, the indexing program that feeds the search engine, the
search engine itself and the result processing program that adds the
interesting word data, clusters andSammon Maps[21] to the hit-
document set.

The networking consists of two parts: a Java threaded socket
server that executes the search engine and captures results from it
and, secondly, Enterprise Java Beans that communicate with the
socket server and return results to a Java servlet that communicates
to the display applet.

The display applet consists of a general query interface and
three visualizations (in addition to a ranked-list display) on different
tabbed panels that are serviced by the same data manager module.
This module is the piece of code responsible for storing the data
and supplying it to the individual visualization modules.

web browser browser vm applet

fetch session bean search session bean

j2ee web server

fetch server search server

extras: interesting words
sparse doc/term matrix
clustering+sammon map

managing gigabytes search engine

threaded socket server

data manager
display module display module display module

Document Collection, eg TREC data

fetch servlet search servlet

Figure 1: The system architecture

The search engine is powered by a slightly modified version of
the mg search enginethat accompanies the Managing Gigabytes
book [31]. This engine, whose C source code is freely download-
able for non-commercial use, can be run in a number of modes.
Here we chose to use ranked query searches where the engine gen-
erates its reference of the document and a brief section of the text,
and we pipe the results out to a processing program.

Before any queries can be run the data set has to be entered into
the search engine. The mg engine expects to run an application or
a shell script that delivers a series of documents to it via standard
output, delimiting each document. Though a basic sample script is
provided it is up to the user to devise a suitable script or program
to carry out this task. The indexing program fulfils the task of the
script. While descending through the various data directories (indi-
cated by an environmental variable) for the documents and listing
their contents to the mg engine, it keeps a record of each word used
in all the documents and counts how many documents the word
occurred in. Having made one complete pass through all the doc-
uments the indexing program then has a data file that contains the
document frequency of each word in the document data set. This
file is used to create an ordered file of candidate keywords, an index
into that file and an index file of document frequencies. Candidate
keywords are those that fall inside a statistical boundary of doc-
ument frequencies (see Section 2.1). The indexing program then
makes a second pass through the document data files, recording,
for each document, the number of occurrences of each candidate
keyword in that document. It stores this data in a variable length
record file and at the same time creates an index into that file.

Once the documents are indexed, the mg search engine is able
to respond to a query by computing efficiently a ranked list of the
references to those documents that contain the query words. Note
that at this point a standard full-text inverted document file is used
for processing a query.

In order to obtain keywords, the candidate keyword and docu-
ment data encapsulated in the above auxiliary index files are used
by the processing program to calculate the weight of each candidate
keyword using the statistical formula (1). The 100 highest weighted
candidate keywords in the result set are kept as keywords. A sparse

matrix of the incidents of the keywords in each document is then
created. This matrix is in turn clustered, and a Sammon map is
generated from the cluster centroids. The document numbers, doc-
ument snippets, the keywords, the sparse matrix of keyword docu-
ment incidents, the clusters of document numbers and the Sammon
map of the clusters are all piped out to the calling program.

The threaded socket server is kept continually running, listen-
ing for requests coming in on two ports. On a request a thread is
created and an instance of the appropriate class to handle the re-
quest is also created. In the case of a search query the search server
runs a shell script that calls instances of the mg search engine and
the result-processing program. When the result is piped back, the
search server uses the result data to create a serialized data object.
The latter is transmitted back across the network to the search ses-
sion bean, ending the thread.

An instance of this stateless session bean is continually running
within the j2ee server. The bean passes the query on from the
servlet to the socket server and then waits for the result, which is
passed back to its caller. The servlet also runs within the j2ee server.
It gets the query as an http request from the applet running in the
browser and sends the query to the stateless session bean.

The applet issues a query and waits for the result. It uses the
serialized data that is returned to set the contents of the data man-
ager that is used by all the visualizations. Once this is set up, all the
visualizations are notified to recalculate their display.

When the applet issues a request for a document, rather than a
query, the request follows a different path. The applet requests the
browser to open a page at the url of the fetch servlet, with a request
for the document number appended to the url. The fetch servlet
then calls the fetch stateless session bean which issues a fetch re-
quest to the fetch server. The fetch server within the socket server
runs the search engine with a customized request for a document.
When the document content is piped back, the server transmits it
as a serialized vector of lines to the fetch bean. The fetch bean
passes the vector of lines back to the fetch servlet which displays
the document in a separate browser window.

The system as it stands is a thick client model. It minimizes use
of the network by putting much of the work in the applet. Once the
applet is installed in the client’s browser only a limited demand will
be made on network resources, both at query time and on document
retrieval.

4 New Paradigms in Information Visual-
ization

The last decade has witnessed an explosion in interest in the field
of information visualization, e.g. [13, 7, 27, 11, 2, 6, 16, 3, 26, 34,
32, 33, 24, 5, 18]. We add three new techniques for information
visualization to the pool of existing visualization paradigms, based
on a design study published earlier this year [4].

4.1 Sammon Cluster View

This paradigm uses a Sammon map to generate a two dimensional
location from a many-dimensional vector of cluster centroids. This
map is computed using an iterative gradient search [21]. The aim
of the algorithm is to represent n-dimensional points in a lower,
usually 2-dimensional, space while attempting to preserve the pair-
wise distances between the objects. Hence, a visualization based
on the Sammon map attempts to arrange the clusters so that their
spatial arrangement in the display rectangle is indicative of their re-
lationship in the n-dimensional space. The idea is to create a visual
landscape for navigation.

The display has three panels, a scrolling table panel to the left,
a graphic panel to the right and a scrolling text panel below (see

Figure 2: The traditional ranked-list metaphor

Fig 3). In the graphic panel each cluster is represented by a circle
and is labelled with its most frequent keyword. The larger circles
are darker and represent the larger clusters, the smaller circles rep-
resent smaller clusters and are a brighter red colour. The distance
between any two circles in the graphic panel is an indication of the
similarity of their respective clusters: the nearer the clusters, the
more likely the documents contained with in will be similar. When
the mouse passes over the cluster circle a ‘tool tip’ box in the form
of a pop-up menu appears. Operations such as “select” and “drill
down” can be executed for this particular cluster or a selection of
clusters.

The first item in the cluster popup menu shows the count of doc-
uments in that cluster. Choosing this item displays a scrolled table
of cluster keywords in the pane on the left-hand side of the visual-
ization and a scrolled list of cluster document hot-links and snippets
appear in the scrolling text window at the bottom of the display.

The table of keywords includes a box field that can be selected.
At the bottom of the table is a filter button that makes the scrolling
text window display only the hot-links and snippets from docu-
ments that contain the selected keywords. The select item in the
pop-up menu marks a cluster as selected and signals this with a flag.
The other menu items serve to label the cluster with four significant
keywords and are not selectable.

The drill down item in the pop-up menu performs a redisplay
of the documents in the current cluster and all selected clusters (if
any). Drill down in this sense pushes the current data manager onto
a stack and creates a new data manager that consists of only the doc-
uments in the current and selected clusters. This new instance of the
data manager re-clusters the subset of the original hit-document set
and then creates a new Sammon map that in turn leads to a new
display in this visualization. The level indication at the top of the
display is incremented and the back button enabled. The back but-
ton pops the data manager from the stack and climbs up the hierar-
chy (drill up). The clustering algorithm used for reclustering on a
drill down operation is essentially the same as the one described in

Figure 3: Sammon-mapping for clustering-based search

2.3. This time though it is implemented in Java within the applet
(as opposed to C in the server processing code). As long as there
are more that six documents in the selected set of documents the
drill down operation is enabled.

4.2 Tree-Map Visualization

The Tree Map Visualization represents the clusters of documents
as rectangles (see Fig 4). This representation is based on an idea
found in [25]. The rectangles are arranged so that they fit within
a larger rectangle. The size of each rectangle is proportionate to
the size of the cluster it represents. Similar clusters are grouped to-
gether insuper clusters. Super clusters are separated by black lines,
while sub clusters have white lines between them. Cluster rectan-
gles are different colours, and are labelled with their most frequent
keywords. The algorithm used to arrange and size the rectangles
is that described in [25]. Moving the mouse over a cluster rect-
angle brings up a bubble box illustrating the three most numerous
keywords in the cluster. Clicking with the left mouse button on
a rectangle displays the list of keywords that occur in the cluster
in a scrolling table on the right of the display. The keywords are
listed in descending order of cluster document frequency. A bar
indicates the frequency of each keyword accompanied by the per-
centage amount. Keywords can be selected as in the Sammon map
view. The ‘Show all Documents’ button below the table lists the
snippet and hot-linked document number for every document in the
cluster in the scrolling box at the bottom of the frame. Clicking
on the hot-link displays the document in a separate document win-
dow. The filter button, when clicked, displays just the documents
that contain the keywords selected in the table pane, in the box at
the bottom of the frame. Right-clicking on the mouse over a cluster
rectangle causes a drill down to occur.

Drill down, as implemented in this visualization, is a new search
of the archive document set using the most populous keywords as
the search terms. The visualization pushes its record of the data

Figure 4: Tree-Map visualization

manager onto a stack. It then creates a new data manager that exe-
cutes the query request and returns the results to this visualization.
When the result is returned a little animation illustrates drill down
and a new display is created within a slightly smaller rectangle. The
back button becomes enabled. If clicked, the display moves back to
the previous visualization. Note that this is a different interpretation
of ‘drill down’ to that used in the Sammon Map visualization.

4.3 Radial Interactive Visualization

Radial is a visualization that is very similar to VIBE [13], to Rad-
viz [12] and to Lyberworld [11]. Radviz places the keyword nodes
round a circle as dimensional anchors and the document nodes oc-
cur in the middle as if suspended by springs connecting them to
keyword nodes. The greater the content, the stronger the springs
affect on the document’s location. (Fig 5 illustrates this paradigm.)
Hence, we make direct use of the representation matrixu without
explicit clustering. Radial adds a level of user interaction to the
metaphor introduced by RadViz and VIBE. Building on VIBE, Ly-
berworld takes a similar idea into three dimensions. In Lyberworld
vector addition is used to position the documents nodes within a
relevance sphere. The document’s keyword content creates a vector
between the centre axis of the sphere and the position of that key-
word on the sphere’s surface. The radius of the sphere is defined by
the range of possible vector lengths. In Lyberworld the relevance
sphere can be manipulated, rotated so that the 2D computer display
can give more of a clue as to the 3D location of the document node
relative to the keyword nodes. Also the relative attractiveness of
the keyword nodes can be enhanced to pull related documents to-
wards them. Radial, staying with only two dimensions, dispenses
with some of the perceptual complexity implicit in rendering a three
dimensional model on a two dimensional screen.

Radial, as in all the visualizations we present here, uses the sta-
tistically collected keywords to differentiate the documents. Ini-
tially, the twelve highest ranking keywords are displayed in a circle.

Figure 5: Radial visualization

Any documents in the search set that contain those keywords are
placed using a similar vector sum within the circle. As the mouse
passes over the document nodes, a bubble displays a descriptive
piece of text from the document. The dimensions of the circle are
more arbitrary than in Lyberworld and if the display were simply
based on a flat sum of vectors it would be possible for the document
nodes to be outside the circle. However we have constrained their
positions by projecting the radial locations through the arc-tangent
function. Thus it becomes harder and harder for a document to be
moved towards the edge of the circle.

Radial, like VIBE, RadViz and Lyberworld, attempts to present
a great many dimensions in only few. Thus locations of document
nodes can be ambiguous, and there is more than one possible reason
why a node could be at a particular point. To mitigate this in Radial
the user can click on a document node, and the keyword nodes that
affect the location of document are highlighted. We believe that
this is a novel and useful feature. Clues to the effects of different
dimensions are also given when a keyword node is selected with
the mouse: the document nodes which contain that keyword are
highlighted.

Similarly to Lyberworld the vector effect of a particular keyword
node on the document set can be enhanced. However, in Radial it is
achieved by grabbing the keyword node with the mouse and moving
it away from the edge of the circle. A sort of manual clustering can
be effected placing several keyword nodes together (like the “cosa”
and “nostra” keywords in Fig 5). Alternatively, a button allows the
displayed keyword arrangement to be automatically clustered using
the columns of the matrixu. Note that document clustering was
done using therowsof this matrix.

The choice of keywords used in the display can be enhanced and
reduced by clicking on two visible lists of words. Zoom buttons
allow the degree of projection to be increased or reduced so as to
distinguish between document nodes around the edges of the dis-
play or at the centre.

Double clicking on a document node with the mouse retrieves

the full document in a separate browser window.
The shortcoming of the Radial visualization is that it can only

say something about the documents in the result set that contain the
particular, limited set of keywords which are displayed. When too
many keywords are displayed the whole display becomes difficult
to interpret. This is where the cluster-based visualizations as wit-
nessed here in the Tree Map visualization and the Sammon Map
visualization show their strength. On the other hand, the Radial
visualization appears to be a good interactive tool to structure the
document set according to one’s own preferences by shifting key-
words around in the display.

4.4 Unified Approach

The unified approach brings the possibility that different visualiza-
tions can be plugged in and that the different visualizations used
could be compared and evaluated against one another.

The application as a whole offers the possibility of browsing the
same result set in several different ways simultaneously, flipping
from one visualization to another. The cluster-based visualizations
give a broader overall picture of the result, while the Radial visu-
alization allows the user to focus on subsets of keywords. Also,
as the clusters are, by implication, approximations that bring to the
fore particular keywords, it may be useful to return to the Radial
visualization and examine the effect of these keywords upon the
whole document set. The Sammon Map attempts to say something
more about the relative relationship of the clusters to one another
than the Tree Map, while the Tree Map is more explicit about clus-
ter size and shows a two-level hierarchical cluster structure.

The Radial visualization will perhaps be more fruitful if the ini-
tial keywords match the users area of interest. However the Tree
map visualization will allow the user to focus on the keywords that
inhabit the sort of documents the user is interested in, even allow-
ing the user to formulate a perhaps more productive search. The
Sammon Map will let the user dissect the search set and re-cluster a
subset, to gradually move closer to the sort of documents that con-
tain the items the user is interested in. Again the user may have
recourse to the Radial visualization and apply those keywords to
the whole result set. In the end, he or she will need to read some of
the documents, but not as many as by negotiating through a ranked
list.

A user wishing to browse a well-structured system of documents
(like a library) is using a system that has, in a sense, already been
clustered. Like documents are obviously arranged close to one an-
other. The cluster-based visualizations give a visual analogy of the
structure implicit in the library classification scheme. The Radial
visualization throws up the effects of keywords that cause cross ref-
erences between documents, and allows the user to skim between
subject areas. Likewise, the drill down as implemented in the Tree
Map Visualization reformulates the search terms, perhaps taking
the user into different classification areas.

5 Evaluation

The literature of information visualization is still one mainly of con-
struction, not of evaluation; for some exceptions to this rule see
[29, 23]. Our evaluation is a three level approach. For level one,
we performed experiments to assess the quality of the clustering
process based on human-expert data, ie, the ability to separate rele-
vant documents from irrelevant documents [19]. We used the 1997-
1998 subcollection of the TREC data with 528,155 documents, 100
queries and corresponding relevance assessments. The question we
posed was whether our clustering algorithms would produce clus-
ters in which the concentration of relevant documents was either
very high or very low. The results showed a compelling evidence
for the validity of the Clustering Hypothesis [28] for post-retrieval

document sets and for the use of low-dimensional document repre-
sentations using the keyword computation discussed in Section 2.
This study gave the green light for developing designs for cluster
visualizations.

For level two, in the process of developing this software, we were
able to get feedback from acquaintances and students through ques-
tionnaires. This was very useful. Placing the executable applet on
the web and letting people know about it meant that shortcomings
were made known to us very quickly.

The application was posted on the web. We asked a group of
users to complete a pre-use questionnaire. We then had them em-
ploy specific visualization interfaces to execute a collection of pre-
set queries that were sufficiently obscure for the answers not to be
known beforehand, and yet to be in the data set somewhere. Next,
we asked the users to apply the system to queries of their own
choice. By this point they would very likely have definite views
on the visualization interfaces. Finally, we asked them to complete
a post-use questionnaire that contained both set, narrow, fixed ques-
tions about the application and more open areas for user comment.
This second-level evaluation served to refine the design and devel-
opment of the visualization interfaces.

The third level of evaluation is a proper and formal user study
and scheduled to be carried out in November 2000 through collab-
oration with the Ben-Gurion University of the Negev.

6 Conclusions

Our work has contributed to the visualization and browsing of the
set of document returned by a search engine in a number of ways.
1) We can identify relevant features of this document set: the key-
words. These are used for dimensionality reduction and improved
clustering, cluster labelling, query refinement and visualization. 2)
Using Sammon’s algorithm we are able to create a setting with a
holistic view giving primarily information about a first-order cluster
structure and inter-cluster relations. The main purpose is to quickly
weed out irrelevant clusters and drill down in one or more relevant
clusters. 3) Using the Tree-Map algorithm, we are able to display
second-order cluster structure at one glance. Applications include
learning about the fine-structure and nature of queried object as
coded in the actual use of the keywords in the document repository
- ideal for a user knowing little about the subject. 4) A keyword
clustering with the Radial visualization gives rise to another novel
document clustering approach, one where the user can control the
building of groups by interactively moving the keywords around.
We feel that this interface is particularly useful for an experimental,
user-driven approach to form clusters and to get a suitable ranking
by interactively moving the keywords around on the screen.

References

[1] R B Allen, P Obry, and M Littman. An interface for navigat-
ing clustered document sets returned by queries. InProc of
the ACM Conf on Organizational Computing Systems, pages
166–171, 1993.

[2] M Ankerst, D Keim, and H Kriegel. Circle segments: A tech-
nique for visually exploring large multidimensional data sets.
In IEEE Visualization ’96, 1996.

[3] J Assa, D Cohen-Or, and T Milo. Displaying data in multi-
dimensional relevance space with 2d visualization maps. In
IEEE Visualization ’97, 1997.

[4] P Au, M Carey, S Sewraz, Y Guo, and S M Rüger. New
paradigms in information visualisation. InProc of the 23rd
International ACM SIGIR Conference, 2000.

[5] K Borner. Visible threads: A smart vr interface to digital li-
braries. InProc of IST/SPIE’s 12th Annual International Sym-
posium: Electronic Imaging 2000: Visual Data Exploration
and Analysis (SPIE 2000), 2000.

[6] S K Card. Visualizing retrieved information: A survey.IEEE
Computer Graphics and Applications, 16(2):63–67, 1996.

[7] M Chalmers and P Chitson. Bead: Explorations in informa-
tion visualisation. InProc of the 15th Intl ACM SIGIR Conf,
1992.

[8] W B Croft. Organizing and searching large files of docu-
ments. PhD thesis, University of Cambridge, October 1978.

[9] D R Cutting, D R Karger, J O Pedersen, and J W Tukey. Scat-
ter/gather: a cluster-based approach to browsing large docu-
ment collections. InProc of the 15th Intl ACM SIGIR Conf,
pages 318–329, 1992.

[10] M A Hearst and J O Pedersen. Reexamining the cluster hy-
pothesis: scatter/gather on retrieval results. InProceedings of
the 19th International ACM SIGIR Conference, 1996.

[11] M Hemmje, C Kunkel, and A Willet. Lyberworld - a visual-
ization user interface supporting fulltext retrieval. InProc of
the 17th Intl ACM SIGIR Conf, 1994.

[12] P Hoffman, G Grinstein, and D Pinkney. Dimensional an-
chors: A graphic primitive for multidimensional multivariate
information visualizations. InProc of the NPIV 99, pages 9–
16, 2000.

[13] R Korfhage. To see or not to see - is that the query? InProc
of the 14th Intl ACM SIGIR Conf, 1991.

[14] P R Krishnaiah and L N Kanal, editors.Handbook of Statis-
tics: Classification, Pattern Recognition and Reduction of Di-
mensionality, volume 2. North-Holland Publishing Company,
1982.

[15] A V Leouski and W B Croft. An evaluation of techniques for
clustering search results. Technical Report IR-76, Department
of Computer Science, University of Massachusetts, Amherst,
1996.

[16] L T Nowell, R K France, D Hix, L S Heath, and E A Fox. Vi-
sualizing search results: Some alternatives to query-document
similarity. In Proc of 19th Annual International ACM Confer-
ence on Research and Development in Information Retrieval
(SIGIR ’96), 1996.

[17] E Rasmussen. Clustering algorithms. In W B Frakes and
R Baeza-Yates, editors,Information Retrieval: Data Struc-
tures and Algorithms, pages 419–442. Prentice Hall, 1992.

[18] P Rheingans and M desJardins. Visualizing high-dimensional
predictive model quality. InProc of IEEE Visualization 2000,
2000.

[19] S M Rüger and S E Gauch. Feature reduction for document
clustering and classification. Technical report, Computing
Department, Imperial College, London, UK, 2000.

[20] Gerard Salton.Automatic information organization and re-
trieval. McGraw-Hill, New York, 1968.

[21] J W Sammon. A nonlinear mapping for data structure analy-
sis. IEEE Transactions on Computers, C-18(5), 1969.

[22] H Scḧutze and C Silverstein. Projections for efficient doc-
ument clustering. InProceedings of the 20th International
ACM SIGIR Conference, 1997.

[23] M Sebrechts, J Vasilakis, M Miller, J Cugini, and
S Laskowski. Visualization of search results: A comparative
evaluation of text, 2d and 3d interfaces. InProc of 22nd In-
ternational ACM Conference on Research and Development
in Information Retrieval (SIGIR ’99), 1999.

[24] C D Shaw, J M Kukla, I Soboroff, D S Ebert, C K Nicholas,
A Zwa, E L Miller, and D A Roberts. Interactive volumetric
information visualization for document corpus management.
International Journal on Digital Libraries, 2(2/3):144–156,
1999.

[25] B Shneiderman. Tree visualization with Tree-Maps: 2-
d space-filling approach.ACM Transactions on Graphics,
11(1):92–99, 1992.

[26] B Shneiderman, D Feldman, A Rose, and X Ferre’ Grau. Vi-
sualizing digital library search results with categorical and hi-
erarchical axes. InProc of ACM Digital Libraries 2000, 2000.

[27] A Spoerry. Infocrystal: A visual tool for information retrieval
& management. InProc of Information, Knowledge and Man-
agement 93, 1993.

[28] C J van Rijsbergen.Information Retrieval. Butterworth, Lon-
don, 2nd edition, 1979.

[29] A Veerasamy and R Heikes. Effectiveness of a graphical dis-
play of retrieval results. InProc of 20th Annual International
ACM Conference on Research and Development in Informa-
tion Retrieval (SIGIR ’97), pages 85–92, 1997.

[30] E Voorhees. The cluster hypothesis revisited. InProc of ACM
SIGIR, pages 188–196, 1985.

[31] Ian H. Witten, Alistair Moffat, and Timothy C. Bell.Manag-
ing Gigabytes. Morgan Kaufmann Publishers, 1999.

[32] O Zamir and O Etzioni. Web document clustering: A feasibil-
ity demonstration. InProc of the 21th Intl ACM SIGIR Conf,
pages 46–54, 1998.

[33] O Zamir and O Etzioni. Grouper: A dynamic clustering inter-
face to web search results. InProc of the Eighth International
World Wide Web Conference (WWW8), 1999.

[34] M Zhou and S Feiner. Visual task characterization for auto-
mated visual discourse synthesis. InProc of Conference on
Human Factors in Computing Systems (CHI’98), pages 392–
399, 1998.

Acknowledgements: This work was partially supported by the
EPSRC, UK.

