The Big Faceless PDF Library
version 2.2

User Guide

Pagel of 42

Introduction

Thank you for your interest in thgig Faceless PDF Libraryrhis userguide will give you an overview of what the
library is capable of, and start you off with some simple examples. For more detailed information, please see the /
documentation supplied in HTML format with this package, and look at the examples supplied with the package.

What is it?

The Big Faceless PDF Library is a collection of classes which allow easy creation of PDF® documents from Java
When linked with your own application, it can be used to rapidly create PDF's (like this userguide) from application
Applets or Servlets.

The library is small, fast, easy to use and integrate into your projects, and is written in 100% pure Java (requires .
1.2 or later). It's well documented and comes with many examples, and as it uses no native code or third-pe
packages it's easy install and run from applications, EJB's or Servlets on any Java 1.2 platform.

Features

Here's a brief summary of the libraries features, for the impatient.

» Native Unicode™ support, even in the document body. No worrying about codepages and encqudinger ks.
+ Edit existing PDF documents with tR®FReader class.

» 40 and 128-bit encryption, for eyes-only documents.

 Digitally sign documents for authenticity and non-repudiation

» Extend the library with custom Signature and Encryption handlers

» Full embedding of TrueType or Type 1 fonts, with subsetting for smaller fonts.

 Full support for creating and editing AcroForms

» Japanese, Chinese and Korean font support

» Right to left and bi-directional text is fully supported.

* Embed JPEG, PNG, GIF, TIFF pava. aw . | mage images.

» Supports Adobes XMP™ specification, for embedding and extracting XML metadata from PDF documents
» Add hyperlinks to text or images

» Add Annotations and Audio samples to the document

 Insert many different types of barcode directly - no Barcode font required!

» Better text layout with track and pair kerning, ligatures and justification

» Paint text or graphics using "patterns”

» Simplify complex documents by defining and applylSyles".

» Full support for PDF features like bookmarks, compression and document meta-information

» Non-linear creation of documents - pages can be created and edited in any order.

« Intelligent embedding. Fonts and images can be reused without increasing the file size.

The libraryofficially only produces PDF's that are validAarobat 4.0 and up (although most documents will work
under Acrobat 3.0 as well, we don't support it). The library output has been verified against Acrobat 4.0, 5.0 and 6.0
Windows, along with numerous PDF viewers on other platforms (including Linux and OS/X).

Installation

Installing the library is as simple as unpacking it and adding thbffigdf . j ar to yourCLASSPATH. You'll find
several other files in the package, includRGADME. t xt , containing the overview of the packagimcs/
LI CENSE. t xt containing the licencing agreement, and dloecs andexanpl e directories containing the API
documentation and the examples respectively.

Page2 of 42

http://big.faceless.org/products/pdf

Section 1. Creating new PDF documents

The Classic Example

1. inport java.io.*;
2. inport java.awt. Col or;
3. inmport org.facel ess. pdf 2. *;
4,
5. public class Hell oWwrld
6. {
7. public static void main(String[] args) throws | OException
8. {
9. PDF pdf = new PDF();
10.
11. PDFPage page = pdf. newPage(PDF. PAGESI ZE_A4) ;
12.
13. PDFStyl e nmystyle = new PDFStyl e();
14. nmyst yl e. set Font (new St andar dFont (St andar dFont . HELVETI CA), 24);
15. nmystyl e. set Fi | | Col or (Col or. bl ack) ;
16.
17. page. set Styl e(nystyl e);
18. page. dr awText ("Hel | o, World!", 100, page.getHei ght()-50);
19.
20. Qut put Stream out = new Fi | eQut put Streanm("Hel | oWor | d. pdf ") ;
21. pdf . render (out);
22. out.close();
23. }
24. }

Example 1 - A "Hello World" program

It doesn't get simpler than the claskiel | oVor | d example - a copy of which is included in theanpl e sub-
directory of the package, so you can try it yourself.

A quick glance at this example reveals several points to remember when using the library.

» The package is calleat g. f acel ess. pdf 2, and the main class is tREF class.
» Each PDF document is madepafyes, which contain the visible contents of the PDF.
» Fonts and colors are set usingye, which is then applied to the page.

» The completed document is sent to @at put St ream which can be a file, a servlet response, a
Byt eAr r ayQut put St r eamor anything else.

In this example, we've used one of the "standard" (14)
fonts that are guaranteed to exist in all PDF viewdrs! Page Co-ordinates

Helvetica. If this isn't enough, the library can embgd _
TrueType™ and Adobe Type 1 fonts, or for Chinese By default, pages are measured from their bottom-

Japanese and Korean other options exist. We'll cqvefft corner in points (1/72nd of an inch). So
more on fonts later. i 00, page. get Hei ght ()-50 is 100 points in

from the left and 50 points down from the top of

Colors are defined with the standdrdva. awt . the page.

Col or class. A PDF document can has two differg
colors - aline color for drawing the outlines of
shapes, andfél color for filling shapes. Read on fo
more on colors.

n'[You can change this using the set Uni t s method
of the PDFPage class, to measure in inches,
centimeters etc. from any corner of the page. See
the API documentation for more info.

. J

Page3 of 42

Defining and applying Styles

Document creators have found that defining the look of their document aile,aather than setting the font, color
and so on separately, makes life simpler. Everything relating to how the content of the page looks is controlled us
thePDFSt yI e class.

Some methods in this class relate just to images, and others just to text. Here are some of the more common on
get you started.

set Fi | | Col or Text, Graphics Sets the color of the interior of the shape. For example,
this table has a Fill color of light gray, while this text has
a Fill color of black.

set Li neCol or Text, Graphics Sets the color of the outline of the shape. This table has
a Line color of black. Setting a Line color on text has no
effect, unless the set Font St yl e method is used to
turn on text outlines.

set Font Text Sets the font and the font size

set Text Ali gn Text Sets the alignment of the text - left, centered, right or
justified, and optionally the vertical alignment too.

set Text Under | i ne Text Whether to underline the text. See also
setFext-St+ikeout

set Text Li neSpaci ng Text Determines how far apart each line of text is - single,
double spaced, line-and-a-half or any other value.

set Text | ndent Text Sets how far to indent the first line of text, in points.

set Li neWei ghti ng Graphics, Text Set the thickness of any lines drawn using the Line
color, in points (including outlined text).

set Li neDash Graphics Set the pattern to draw lines with. Normally lines are
solid, but you can draw dashed lines using this method.

set Li neJoi n/ Graphics Determines how the ends of a line are drawn - squared

set Li neCap off, rounded and so on. The line cap is the shape at the

end of a line, and the line join is the shape where two
lines meet at a corner.

Table 1 - Common methods in the PDFStyle class

Styles are more than just a useful way of grouping aspects of appearance together - they hehlpnage the look
and feel of your document:

« If many different items are meant to have the same look, give them all the same style. You only need to alter
style once to change their appearance.

» Styles can bextended - create a copy of a current style and change a single aspect, and everything else will t
inherited.

» By using a relatively limited number of styles, a document has a more consistent "look-and-feel".
» Name your styleReader , sour cecode and so on to get a clearer perspective oftihueture of the document.

Colors

Paged of 42

As you can see from the table above, PDF documents lfave

two active colors. The Line color (or "Stroke" color) is thje [Outline or Solid?
color used to draw outlines of shapes or text, and the |Fill

color is the color used to fill those shapes. Text is normally For outlined shapes,
drawn with just the fill color, although as you can spe Only

opposite you can call thet yl e. set Font St yl e() For solid shapes, set the Fill color only

set the Line color

method in thePDFSt yl e class to set text to outlined, « For both, set both colors!

filled and outlined or even invisible (which we've seen used For text, call st yl e. set Font St yl e()

in an OCR application, so it's ncampletely useless).

Calibrated Colors

The library has full support for calibrated, or device-independent colors. The PDF specification allows colors to |
calibrated against €olorSpace, which is essentially a complex mathematical function which determines exactly
which shade of red, white or black you get. For programmers who are used to working with computer monitors witk
"brightness" and "contrast" knob, the concept of calibrated color may seem a little alien, but in the print world it

essential.

The Java language designers got it correct right from the start, and defined the gxaeberstwt . Col or class in
such a way as to make defining colors simple. The default color space is a standard lsiR@B, agich is a W3C
standard and supported by a large number of computer companies. When youCGedemifyr ed in your program,
you're actually getting the color "red=100%" in the SRGB colorspace. Since 1.1.5, all PDF documents generated

the Big Faceless PDF Library are calibrated to use the sSRGB ColorSpace as well.

So how do you use other colorspaces? Here's an example:

1. inport java.awt.color.*;
2. inport java.aw . Col or;
3.
4. public void col or Deno(PDFPage page)
5. t hrows | OException
6. {
7. Col or redl = Col or.red; /I sSRGB colorspace, red=100%
8.
9. /I Create the same red in an ICC colorspace loaded
10. /I from a file. Here we use the NTSC color profile.
11. ICC Profile prof = ICC Profile.getlnstance("NTSC-Profile.icc");
12. I CC_Col or Space ntsc = new | CC_Col or Space(prof);
13. float[] conp = { 1.0f, 0.0f, 0.0f };
14. Col or red2 = new Col or (ntsc, conp, 1);
15.
16. /I Create a yellow color in the device-dependent CMYK
17. /I colorspace, supplied with the library.
18. Col or yel |l ow = CMYKCol or Space. get | nst ance() . get Col or (0, 0, 1, 0) ;
19.
20. /I Create a spot color from the PANTONE™ range
21. Spot Col or Space spot = new Spot Col or Space(" PANTONE Yel | ow CVC',
22. Col or spotyell ow = spot. get Col or();
23. }

yel | ow) ;

Example 2 - Specifying different colorspaces

This may seem a complicated example, but first it demonstrates using four different colorspaces in 20 lines. |

doesn't make sense, then you're probably not going to need that bit anyway!

You may notice we've shown you how to create the colors, but haven't shown you how to apply the colors to the P
document. That's because colors created using these different colorspaces are treated no differently than colors
the normal sRGB colorspace. Just usegbéeFi | | Col or andset Li neCol or methods like you would do

normally - the colorspace handling is all done behind the scenes.

Pageb of 42

For more information on Spot and CMYK colors, have a look at the Java APl documentation for the
CMYKCol or Space andSpot Col or Space classes that are part of the PDF library.

Some image formats can also use calibrated colors. PNG, TIFF and JPEG images may have an ICC color prc
embedded, which the library will pick up and use automatically (GIF images do not, but can easily be converted
PNG if necessary). For all of these image formats angl doa. awt . | nage images as well, if a specific color
profile is included as part of that image format, it will be used automatically.

Pageb of 42

Transparency and Translucency

The release of Acrobat 5.0 introduced the concept
translucent colors to PDF, and since version 2.0 this

supported with the PDF library as well. The measure
transparency in a color is known as @'pha value - a color

with an alpha of 0.0 is completely transparent, while an al
value of 1.0 is completely opaque. Specifying a color with
alpha value in Java is easily done - there are a numbe
constructors in th¢ ava. awt . Col or class that take an
alpha value.

For example, the image to the right shows three transluc
circles. These are simply drawn by setting the fill color

(of
is 0 Translucency

of

bha
an
r of

tent
totop

new Color(1, 0, 0, 0.5f),new Color(0, 1,
0, 0.5f) andnew Color (0, 0, 1,
page.

Those viewing this
document in Acrobat
5.0 or greater should
see a typical color-
blend here. Earlier
viewers will probably
display three opaque
circles, with blue on

0. 5f) respectively, applying the style and drawing the circles on the

Translucency is also supported in the PNG and GIF image formats - basically, if you load an image with transluc
colors, then assuming the PDF viewer is Acrobat 5 or later, then the image will be displayed correctly.

Patterns

As well as solid colors, patterns and gradients can be used for special effects (for instance, the box on the top rigt
this page has a background pattern of stars). Several pre-defined patterns exist, or more advanced users can defin
own. ThePDFPat t er n class implements theava. awt . Pai nt interface, and so can be be passed into the

set Li neCol or andset Fi | | Col or methods of #DFSt yl e. to fill text or shapes with a pattern.

The" Stri peXX" pattern creates a pattern of alternating stripes. "XX" may be
number of 0 to 360, and specifies the angle of the stripes in degrees. The box to the
example, was created usingw PDFPattern("Stri pe30", 0, 0, 10, 10,
colorl, color2).

any
left, for

Here is another example of'&t r i pe", with vertical stripes and a different width f
each stripe color. This is equivalenttbStri pe0", 0, 0, 15, 5, colorl,
col or 2)

This is the pattern calletBri ck". For budding brickies, this style of brick laying|

known as a running pattern bond.

S

This check pattern is created by passi@heck" to the PDFPattern constructor.

..... This pattern is created by callimegw PDFPattern("Grid", 0, 0, 20, 20,
colorl, color?2)
® ® ® ® 0| A spot pattern similar to the pattern used for halftoning in newspapers can be crepted by
® ® ® ® O | passingin "Spot” to the constructor.
o © 06 0 O
-—s '—s -
® ¢ ©® 4 0| This pattern is created by callimpw PDFPattern("Pol ka", 0, 0, 20, 20,
o O. [] 0. ® 4colorl, color2)
— _ _ _
Finally, a pattern of repeating 5-pointed stars (like those on the US flag) can be greated
* * with the "Star" pattern. be set

Table 2 - Color patterns

Pager of 42

Custom Patterns

Custom patterns can be created in one of two ways. FiPBFF@anvas can be created and a pattern drawn onto it.
This can then be used as a tile to paint with. Here's a simple example showing how to paper the page with yel
smiley faces.

PDFCanvas til e = new PDFCanvas(40, 40);

PDFStyl e style = new PDFStyl e();

style.setFill Col or(Col or.yell ow);

styl e. set Li neCol or (Col or. bl ack) ;

tile.setStyl e(style);

tile.drawG rcl e(20, 20, 15); /I Draw the face
tile.drawG rcl eArc(20, 20, 11, 110, 250); /I Add a smile...
tile.drawG rcl e(15, 25, 2); /I ...and two eyes
tile.drawCircl e(25, 25, 2);

10. tile.flush(); /I Optional but a good idea

© o =@ @ = 0 =

12. PDFPattern pattern = new PDFPattern(tile, 0, 0, 40, 40);

14. PDFStyl e pagestyle = new PDFStyl e(); /I Now fill the page
15. pagestyle.setFill Col or(pattern);

16. page. set Styl e(pagestyl e);

17. page. drawRect angl e(0, 0, page.getWdth(), page.getHeight());

Example 3 - Creating your own patterns

A second method, for those that know something about the internals of PDF, is to define a pattern as a sequenc
PDF operators in a resource file. We'll cover this in more detaibiteasection

Pages8 of 42

Text and Fonts

Document developers have a large choice when it comes to choosing a fofit for)
their document. First, every PDF document is guaranteed to have a set|ofStandard 14 fonts

base fonts available to it, which the library calls "Standard" fonts. Thesg are

available via theSt andar dFont class, an example of which you've alrea ijlmes _

seen in the "HelloWorld" example. Times-Italic

Times-Bold

Secondly for Chinese, Japanese and Korean, Adobe has defined a set of sfandg¥es-Boldltalic

fonts which are available in every PDF viewgnoviding the correct language | Helvetica

pack is installed. The language packs are part of the appropriate regignal€/vetica-Oblique

versions of Adobe Acrobat, or can be downloaded as separate packs for|offglvetica-Bold
versions of Acrobat. Other PDF viewers will have different requirements. The5i!vetica-BoldOblique
fonts are available via tH&t andar dCIJKFont package. Courier
Courier-Oblique

Finally, a document can contain both Adobe "Type 1" and OpenType™ fgnioUri er-Bold

Many users will have heard instead BleType™ fonts, which is a format| CoUri er-Bol dObli que
developed jointly by Apple and Microsoft (many TrueType fonts are markef AOBPry (Sym_bol)

"Apple" or "Windows" specific - the library works with either). A few yeafs**¥¢ (ZapfDingbats)

back Microsoft and Adobe finally made peace, and the two companies combiret <
their competing formats into the "OpenType" format - so TrueType is a subset of OpenType. In fact at the moment
the only subset we support - OpenType fonts with PostScript glyphs cannot currently be used, although we expect
to change shortly.

Both Type 1 and OpenType fonts can be eitheerbiesedded or referenced in the document. Referencing the font
requires the font to be available already on the target platform - because of this it's not really suitable unless y
document is going to a limited audience, all of whom you know have the font installed.

Embedding a font guarantees it will be available to the PDF viewer, but increases the file size of the docume
TrueType font glyphs can be subset (meaning only the characters that are used are embedded), which reduces tr
size. This is generally a good idea, and TrueType fonts are subset by default when embedded.

When creating an embedded OpenType font, the user has to decide whether to embed it using 1 or 2 bytes per g
Using a single byte can save space, but limits the font to displaying only 255 different glyphs. This is more th:
enough for almost every language except Chinese, Japanese, Korean, although we generally recommend that
embedding an OpenType font, 2 bytes per glyph are used for all non-western European languages, as this is r
compatible with older PDF viewers and also some text-extraction tools.

PDF does not have a native concepbdf oritalic. Instead, each variation is treated as a completely separate font
(most operating systems and word-processors work this way too, but shield this fact from the user). This means the
italicize a single word, you need to access two different fonts - which means even larger files when you're usi
embedded fonts.

So how do you use one of these fonts? Inblel oWor | d example earlier, you saw how to access one of the built in
fonts. Here's how you use a TrueType font in a document.

public void showText (PDFPage page)
throws | OException

—~

PDFFont myfont = new OpenTypeFont (new File("nmyfont.ttf"), 1);
PDFStyl e nystyle = new PDFStyl e();

nmystyl e. set Font (nyfont, 11);

page. set Styl e(nystyl e);

page. dr awText ("This is a TrueType font", 100, 100);

© 6y =) @ @il > 90 =

—

Example 4 - Using an OpenType font

Paged of 42

The only different between the earlier version and this one is line 4.

One of the unique features of this library is that the full range of characters from each font can be used. Traditiong
in PDF documents, authors had to choosenanding, which gave them access to a certain number of characters but
no more. If your font had characters that weren't in this predefined set, tough. We work around that internally, so t
the full range of characters from each font can be accessed easily - essential for languages that use characters o
the basic US-ASCII range. As you would expect for a Java library, we use the Unicode standard to access e
character. To print the Euro character (€), you would wuse a line Ilike
page. dr awText (" Hel | o, \u20AD wor| d"); in your code. If the font has the correct symbol, the character
will be displayed.

Formatting Text

Up until version 1.2 of the library, the way to place text on the page was vizethenText , dr awText and
endText methods, the simplest variation of which you've already seen in the previous examples. While effectiv
these methods were limited - you couldn't mix text and graphics in a single paragraph, and the only way to calcul
the height of a paragraph of text was to draw it first, find out how much space it took then discard it.

To remedy these problems, in version 1.2 the bawout Box class was added, which gives a lot more control at the
expense of perhaps being a little more complicated. As they're quite different to use, we'll cover both technigt
separately

Simple text formatting using the drawText method

1. public void fornmat Text (PDFPage page)
2. {
3. PDFStyl e plain = new PDFStyl e();
4. pl ai n. set Fi | | Col or (Col or. bl ack) ;
5. pl ai n. set Text Al i gn(PDFSt yl e. TEXTALI GN_JUSTI FY) ;
6. pl ai n. set Font (new St andar dFont (St andar dFont . HELVETI CA), 11);
7.
8. PDFStyl e bold = (PDFStyl e)pl ain. cl one();
9. bol d. set Font (new St andar dFont (St andar dFont . HELVETI CABOLD), 11);
10.
11. page. begi nText (50, 50, page. get Wdth()-50, page.get Hei ght ()-50);
12. page. set Styl e(pl ai n);
13. page. drawText ("This text is in ");
14. page. set Styl e(bol d) ;
15. page. dr awText (" Hel vetica Bold.");
16. page. endText (f al se);
17. }

Example 5 - Simple text using the drawText method

For text layout, the library uses the concept bba- a rectangle on the page containing a block of text. Text within
this block can be written in different styles, and can be left or right aligned, centered or justified. You can even
TrueType, Type 1 and the Standard fonts on the same line.

The example above shows some of the method calls used to draw the text on the paggi mfiext method is the
most important, as it defines the rectangle in which to place the text. It takes the X and Y positions of two oppos
corners of the rectangle - in this example the entire page is used, less a 50 point margin.

Oncebegi nText is called, thalr awText method can be called as many times as necessary to place the text on th
page, interspersed with callsget St yl e as required.

To end the text block, call thendText method. This takes a single boolean parameter, which determines whether tc
justify the final line of textf the current text alignment is justified. Nine times out of ten, this will be set to false.

Pagel0 of 42

The End of theLine

When a line of text hits the right margin, it's wrapped to the next line. Exactly where it is wrapped is open to deba
We've chosen to follow the guidelines set down by the Unicode consortium as closely as possible, which gener:
speaking means lines are wrapped at spaces or hyphens, but words themselves are not split. Japanese, Chine:
Korean follow a different set of rules, which means that words can be split just about anywhere (with a few exceptic
to do with small kana and punctuation). For more control over this, we need to look at using somsopfriie
characterslefined in the Unicode specification.

The End of the Page

When the text box defined by tbegi nText method is full, no further text will be displayed. Instead, it's held in an
internal buffer waiting for you to tell the library what to do with it. You can tell when the box is full by checking the
return value of thelr awText method. Normally this returns the number of lines displayed (in points), but if it
returns- 1 that indicates that the box is full. However, be warned - one of the major reasons we moved to tt
Layout Box classes is because measuring text this way wasn't accurate enough for complicated layouts. If your t
is going to wrap to the next column or page,sivengly recommend you use tlheyout Box class instead.

Advanced text formatting using the LayoutBox class

The Layout Box class was added in version 1.2 to remedy several deficiencies with the existing text-layout mode
While able to do everything that tde awText method can do, it adds several new features:

* mix images and other blocks with the text

determine the size and position of a phrase in the middle of a paragraph
» determine the height of the text before it's printed to the page

better layout control when adjusting the font size over a line

First, a simple example, which is almost identical to the last one we demonstrated.

1. public void fornmat Text (PDFPage page)
2. {
3. Local e | ocal e = Local e. get Defaul t ();
4.
5. PDFStyl e plain = new PDFStyl e();
6. pl ai n. set Fi | | Col or (Col or. bl ack) ;
7. pl ai n. set Text Al i gn(PDFSt yl e. TEXTALI GN_JUSTI FY) ;
8. pl ai n. set Font (new St andar dFont (St andar dFont . HELVETI CA), 11);
9.
10. PDFStyl e bold = (PDFStyl e)pl ain. cl one();
11. bol d. set Font (new St andar dFont (St andar dFont . HELVETI CABOLD), 11);
12.
13. Layout Box box = new Layout Box(page. get Wdt h() - 100) ;
14. box. addText ("This text is in ", plain, |ocale);
15. box. addText (" Hel vetica Bold.", bold, |ocale);
16. page. dr awLayout Box (50, page. get Hei ght ()-50);
17. }

Example 6 - Text using the LayoutBox class

We say "almost identical" to the previous example, because there's one subtle difference, andahetity thaint

for the two different text methods is different. With thegi nText , the co-ordinates you give the method are the
position of thebasdline of the first line of text. The first line of text will mostly be displayed above this point. With the
dr awLayout Box method, the co-ordinate you give it is tiop-left corner of the box, equivalent to the top of the
first line of text. This allows better control when mixing images or various different size of fonts on the same line.

Pagell of 42

Xy

‘Sample

Figure 1a - Positioning usirgegi nText

Figure 1b - Positioning usindy awLayout Box

Mixing text and images

Now we've got the basics covered, we'll show you some of the more interesting tricks you can do with tt
Layout Box class. First, and probably simplest, is placing an image in the middle of the text.

box. addText (" and this text is after.", nystyle, |ocale);
page. dr awLayout Box(x,

page. dr awl mage(i mage,

)
x+box. get Left (),

SENEn s @[=

y+box. get Left (),

Layout Box box = new Layout Box(wi dt h);
box. addText ("This text is before the i mage ", nystyle, |ocale);
Layout Box. Box i mage = box. addBox| nli ne(i ngwi dt h, i nghei ght, PDFStyl e. TEXTALI GN_BASELI| NE) ;

x+box. get Ri ght,

y+box. get Botton{());

Example 7 - Mixing Text and Images in a LayoutBox

As you can see here, we call thayout Box. addBoxI nl i ne
paragraph. This method, like all the otlagd. . .

method to place a "box" in the middle of the

methods in th&ayout Box class, returns hayout Box. Box

object which can be used to determine the position of the rectangle relative to the positidnagfatbeBox. Here

we use those co-ordinates to draw an image on the page, but
color. Here's what the output of this example could look like.

it would be just as easy to, say, fill the rectangle w

This text is before the imageE

" |and this text is after.

Two further things to point out before we move on. First, the last parameteraddBex| nl i ne method controls

thevertical alignment of the image, relative to the rest of the text

. We'll cover more on vertical-alignment in a minute.

The second thing is that there's an even easier way to draw an image than the method shown above - use
Layout Box. Box. set | nage method. This convenient shortcut saves you from having to catirthed mage

method yourself, although it's limited to working with images.

Pagel2 of 42

Text positions - using LayoutBox.Text class

The next example shows how to use the boxes returnedafdaimext to draw a colored background to a piece of
text.

1. PDFStyl e background = new PDFStyl e();

2. background. setFil |l Col or (Col or. bl ue);

3.

4. Layout Box box = new Layout Box(wi dth);

5. box.addText("The foll owi ng phrase will be drawn on ", nystyle, |ocale);
6. Layout Box. Text text = box.addText("a bl ue background", nystyle, |ocale);
7. box.addText (", but now we're back to normal.", nystyle, |ocale);

8. box.flush(); /I Important, or the last line may not be positioned!

9.

10. page. set Styl e(background);

11. do {

12. page. dr awRect angl e(x+t ext . get Left (), y+text.getlLeft(), x+text.getRight, y+text.getBotton());
13. t ext =t ext . get Next Twi n() ;

14. } while (text==null);

15. page. dr awLayout Box(x, Y);

Example 8 - Setting the background behind the text

If you take a close look at this example you'll see it's almost identical to the previous example, with the exception
thedo/ whi | e loop. Why is it there? The answer lies in how text is positioned ibdg@ut Box. When you add a
piece of text to the box, unless you call #axlText NoBr eak method or otherwise have good reason to assume the
text won't be split over more than one line, you have to allow for this possibility. The
Layout Box. Text . get Next Twi n() method allows you to cycle through the one or niagout Box. Text

objects which represent the phrase of text on the page, until the method meturnsindicating all the boxes have
been returned. If you're using the LayoutBox class and want to turn some of the text into hyperlinks, this is the way
do it.

Vertical positioning in a LayoutBox line

Prior to version 1.2 there was only very basic support for mixing different sized text on a single line. Thi
Layout Box class adds full, Cascading Style-Sheet style support for vertical alignment. When mixing elements «
different height on the page, you need to be aware of what options are available to help with positioning them.

Before we continue, there are two definitions we need to makelékh®&ox is a box equivalent to the size of the text
itself. This may be the same as or smaller tharh. the Box, which is the box equivalent to the size of the entire line.

A line box is always sized so that it fits the largest text box in the line. In the example below, the line box is in yello
the larger text-box is in green and the smaller of the two text-boxes is shown in orange.

Large ™ | [Largewse| | Largesssi | LArgesson

Figure 2 - Vertical alignment examples

This example shows the four different options for vertical alignment within a lineTlopxplaces the top of the text
box at the top of the line bokliddle places the middle of the text box at the middle of the line Baseline, the
default, places the baseline of the text box at the baseline of the line box. Biotatign places the bottom of the text
box at the bottom of the line box.

The same rule applies to boxes added usingtitBox| nl i ne method. In themage example@bove we use the
PDFSt yl e. TEXTALI GN_BASELI NE method to place the image, although as the image was the largest item on thi
line it had no effect. If the box representing the image is smaller than the line box however, the last parametet
addBoxI nl i ne has the same sort of effect as with the text demonstrations above.

The height of each text box depends on both the size of the font used, teadliitg - white space between lines.
Each font has a preferred leading, which is set by the font author. This can be retrieved by th

Pagel3of 42

PDFFont . get Def aul t Leadi ng method. The line height can then be set as a multiple of this value by calling the
PDFSt yl e. set Text Li neSpaci ng method. Passing in a value df 0 results in each line of text using the
default leading, whereas a value2of0 would double it, and so on. Leading is always evenly distributed, half above
and half below the text.

Floating boxes

You've seen how to add images in the middle of a paragraph, but there's one more common type of placement - kn
asfloat positioning. This allows a paragraph of text to wrap around a rectangle. We've already used this style
positioning a few times in this document - seeStendard Fonts noten page for an example.

Boxes can be "floated" to the left or right of a paragraph - simply calldd8oxLeft oraddBoxRi ght method

to choose which. The top of the box will be placed either on the current line or the first clear line, depending on t
clear flags (more in a minute), and any further text will wrap around it until the text grows beyond the height of tf
box. This is easier to describe with an example.

1. PDFStyle background = new PDFStyl e();
2. background. set Fi |l | Col or (Col or. bl ue) ;
3.
4. Layout Box box = new Layout Box(wi dth);
5. box.addText("The following text will be drawn ", nystyle, |ocale);
6. Layout Box. Box box = box.addBoxRi ght (50, 50, LayoutBox. CLEAR _NONE);
7. box.addText("around the box to the right. Wien it grows beyond that box\
it will automatically fill the width of the line", nystyle, |ocale);
8.
9. page.drawLayout Box(x, VY);
10. page. drawRect angl e(x+text.get Left(), y+text.getlLeft(), x+text.getRight, y+text.getBottom());

Example 9 - Text floating around a box to the right

“The following text will be drawn around t
box to the right. When it grows beyond t
box, it will automatically fill the width of the line.”

Figure 3 - Text flowing around a floating box

The CLEAR_NONE flag effectively says "it doesn't matter if another box is already floating to the right - in that case
place this box next to it" - although in this example there's only one floating box, so it has no measurable effect. T
other alternative is to say that this bmwst be placed flush on the right margin - if another floating box is already
there, it will position itself below that one. There are all sorts of variations on this theme, and we won't describe all
them. Instead, we'll leave you with an example showing the sort of layout that this class is capable of.

box. addBoxRi ght (50, 50, Layout Box. CLEAR RI GHT);
box. addBoxRi ght (50, 50, Layout Box. CLEAR RI GHT);
box. addBoxRi ght (50, 50, Layout Box. CLEAR _NONE) ;
box. addText (" Text text ...", mystyle, |ocale);
box. addBoxLeft (50, 50, Layout Box. CLEAR_NONE);
box. addBoxLeft (50, 50, Layout Box. CLEAR_NONE);
box. addBoxLeft (50, 50, Layout Box. CLEAR_NONE);
box. addBoxLeft (50, 50, Layout Box.CLEAR LEFT);
box. addText ("More nore ...", nystyle, |locale);

© ey = @ > Y =

Pagel4 of 42

Text tgxi text
text tgxt text
text texttext
text text text text text text text text text text text text text text text text text text text text
text text text text text text text text text text textMore morg
more more more more more more more more more moretmoere
more more more more more more more more more more more more morg more
more more more more more more more more more more more more more more more mpre mo
more more more more more more more more more more more more more more more mpre mo
more more more more more more more more more more more more more more more mpre mo
more more more more more more more more more more more more more more more more mire mc
more

Figure 4 - Things you can do with the "clear" flag

Advanced text layout features
Quotes

Ther equot e method in thPDFFont class can be used to substitute the normal single (') and double (") quote
characters into nicer looking glyphs - turning "a test" into “a test”, ,ein test”, "en prgve” or whatever is appropriate fc
the specified locale.

. N\
With kerning Kerning, Spacing and Ligatures
AWAW Most good quality fonts have kerning table, which allows for the spaces
Without kerning between letters to be adjusted for improved appearance - as you can see,
AWAW sequence of A's and W's without kerning look too far apart. Another way to
Ligatures, with & without improve the appearance of text is with ligatures - a single shape representing twc
fi fi or more joined characters. They're not too common in Latin scripts, but in
I\ _/ languages like Arabic they're essential. Throughout the library, variable-width

fonts have kerning and ligatures applied automatically, unless they're inhibited usihgichde Control character
"zero-width non-joiner".

For control over spacing between letters, there are several options. First is the method we'd generally recomm
because we feel it gives the best results - settingugtication ratio.

Theset Justificati onRati o method of théPDFSt y| e class allows you to choose where to add the extra
whitespace required to justify a short line of text. A value of 0 means extend spaces between words, for a result
THREE SHORT WORDS, whereas a value of 1 means extend the spaces between letters like this
THREE SHORT WORDS. The default is 0.5, i.e. somewhere in the middle, and gives good results (this
document is formatted using the default value). Kashida justification, required for justifying Arabic script, is no
supported in this release.

Another option is track kerning, which allows you to manually squeeze or expand the space between letters. Thi
done using theet Tr ackKer ni ng method in thd®?DFSt y| e class. The effect is equivalent to moving every letter
together or apart by a fixed amount.

The final option is to use the Unicode spacing characters - U+2000 to U+200A. These only work with the proportior
Standard Fonts, i.e. Helvetica and Times. These spacing glyphs are legacies of the pre-electronic typesetting d
when spacing was done manually by inserting small spacing blocks between each letter on the press. Although nc
useful today, they are an option which some users may prefer. Simply insert them between letters in the same way
normal space character.

Pagel5 of 42

Text measurement and positioning

In some situations it's required that the size of the text is known beforehand. This is easily done with tt
get Text Lengt h method and friends from tHRDFSt y| e class. They return the exact left, right, top and bottom of
the specified line of text in points, so the size of the text is known beforehand. For even more precision, the meth
like get Ascender in thePDFFont class allow you to adjust the position of the text accordingly.

International support

For many of the worlds languages, provided an appropriate font is used the library will work out-of-the-box. Th
standard 14 fonts cover (to the best of our knowledge) English, German, French, Spanish, Norwegian, Swed
Danish, Finnish, Italian, Portuguese, Catalan (although the "L with dot" character is missing), Basque, Dutch (no "
ligature), Albanian, Estonian, Rhaeto-Romance, Faroese, Icelandic, Irish, Scottish, Afrikaans, Swabhili, Frisia
Galician, Indonesian/Malay and Tagalog. With an appropriate embedded font, most other languages will wol
although remember that Java up to and including version 1.4 is limited to the Basic Multilingual Plane of Unicode
the first 65,536 characters - and the PDF format itself is limited to 16 bits per glyph.

Arabic, Hebrew and Yiddish are fully supported as of version 1.1 of the library, which implements thadade
bidirectional algorithmversion 3.1 - although the complete range of Arabic ligatures is not yet implemented, the
number that are there should cover most cases. The Unicode directional override characters are supported as pe
specification.

Japanese, Chinese (simplified and traditional) and Korean are also newly supported as of version 1.1, althoug
horizontal writing mode only. To display text in these languages, an OpenType font can be embedded with 2 bytes
glyph. This will probably result in a very large document however, as several hundred glyphs would typically be use
There is another option - Adobe have and defined several "standard" fonts which are available with the localiz
versions of it's viewers, or as separate language pagksloadabldrom their website.

These fonts can be used via Bteandar dCIJIKFont class, which is similar to thet andar dFont class for latin-
based scripts — although if the viewer doesn't have the appropriate font installed, all they'll see is a request
download it. Line breaking for these languages follows the recommendations laid out in the Unicode 3.1 specificati
but the zero-width space characters can be used to override this. Since version 1.2.1 the Hong Kong Supplemer
Character Set (HKSCS) is supported in the MSung font, although you'll need a recent language pack to view th
characters (Acrobat 5.0 or later)

The following languages have poor or non-existant support.

» Thai, Khmer and Myanmar should work fine, but the rules for line-breaking require analysis of the words beir
printed, which we can't do. This means that line-breaking will have to be done manually, by inserting spaces
zero-width spaces where appropriate.

» We haven't worked on Devenagari, Bengali and friends yet, owing to the difficulty in finding a decent font with th
correct Unicode encoding, and because we don't know anyone that speaks it well enough to tell us whether w
got it right or not.

» Urdu, with it's right-to-left diagonal baseline, is unlikely to be supported in the near future, although if a horizonte
baseline is acceptable it should work fine.

* Mongolian and Tibetan both have unusual line-breaking rules, which we haven't attempted to implement. This ¢
be done manually like for Thai, above. Vertical display of Mongolian text is not supported, nor is it likely to be.

» Any other languages requiring ligatures to display correctly (other than Arabic and Armenian) are not current
supported, probably because we don't know about them.

Theset Local e method of théP?DF class is important with multi-lingual documents, as it determines the primary
text direction of a document, the default text alignment (right-aligned for Arabic and Hebrew locales), the style
guote-substitution to use and various other aspects of the display. It defaults to the system Locale, so generally
already correct - but just in case it can be set and re-set as many times as needed. The locale being used when th
is written is considered to be the locale of the document as a whole.

Pagel6 of 42

http://www.unicode.org/unicode/reports/tr9
http://www.unicode.org/unicode/reports/tr9
http://www.adobe.com/products/acrobat/acrrasianfontpack.html

Is this character available?

How do you know if a certain character is available in the font you're using? One way is to create the document, ¢
look for a line resemblin/ARNI NG: Ski ppi ng unknown character '?' (0x530) printed toSyst em

er r . Of course, by the time you've got this information it's too late, so a better way is to calDdfe ned method

of thePDFFont you're using, which returns true if the character is defined.

Something to remember if you're using hon-embedded fonts (particula®y #radar dCIJKFont fonts) is that just
because a character is defined on your local copy of the font, doesn't mean that the character is defined in the ve
on the viewers machine.

Unicode

TheUnicodespecification is a universal encoding for every character in every language. It's a work in progress, whi
means that new characters are being added all the time. All Java strings are automatically in Unicode, and the lib
supports it too - which means it's easy to mix characters from many languages in a single phrase.

Any character from the entire Unicode code range can be added to the document, without having to worry abi
codepages, encodings and various other difficulties common when using Unicode in PDF - the library takes care «
all internally, and provided the font has the character defined, it will be displayed.

As well as defining a list of characters, the Unicode specification goes further and defines various rules for layout
text, such as the bi-directional algorithm (how to handle mixed left-to-right and right-to-left text on a single line), rule
for when to add a line break, and so on. Some of the code-points in the specification are control characters wt
affect these algorithms, in the same way that the ASCII code 9 means "horizontal tab".

The library supports most of these control codes, which can be included in any text displayed on the page to con
exactly how the page is laid out.

Pagel7 of 42

http://www.unicode.org

U+00AO0

U+00AD

U+200B

U+2011

U+FEFF

U+200C

U+200D

W200E, W200F,
W202A - W202E

U+2044

U+2028, W+2029

Non-Breaking Space

Soft Hyphen

Zero-Width Space

Non-Breaking Hyphen

Zero-Width Non-Breaking Space

Zero-Width Non-Joiner

Zero-Width Joiner

Directional Indicators

Fraction Slash

Line and Paragraph Separators

The same as a regular space character,
but prevents the words on either side
being separated by a line break

Inserted into a word to indicate that the
word may be split at that point. If the
word is actually split, a hyphen is
displayed, otherwise this character is
invisible

Inserted into a word to indicate that the
word may be split at that point.

Regardless of whether the word is split
or not, this character is invisible

Identical to a hyphen, but prevents the
characters on either side from being
split.

Inserted into a word to prevent the word
being split or hyphenated at that point, or
around characters which would
otherwise be a potential break-point.

Inserted into a word to indicate that no
ligature should be formed between these
two letters. Mostly used in Arabic
language scripts, we also use it to
prevent the "f" and the "i" joining as a
ligature in the example on the previous

page, and to prevent kerning.

Inserted into a word to indicate that the
characters should be replaced with a
ligature. Currently has no effect.

Inserted into a phrase to control text
direction for bidirectional text. These
function as described in the Unicode
bidirectional algorithm.

Not strictly a control character, when
placed between two numbers this slash
results in the appropriate fraction being
substituted - so page. drawText ("1
\u20442") displays as "1/2". In version
1.1 this will only work if the appropriate
fraction is defined in the font.

Unicodes attempt at solving the age-old
"CR+LF, CR or LF" problem was to add
two new characters which are to be
unambiguous in their meaning. There is
no advantage to using these - the library
regards both of these as a normal
newline (whatever is produced by "\n" on
your system).

Table 3 - Unicode control characters

Pagel8 of 42

Graphics

Bitmap Images

1. public void show nmage(PDFPage page)

2. throws | OException

3. {

4. PDFI mage i ng = new PDFI nmage(new Fi |l el nput Strean(" nyi nage. j pg"));
5. int width = ing.getWdth();

6. i nt height = ing.getHeight();

7. page. dr awl nage(i ng, 100, 100, width, height);

8. }

Example 10 - Displaying an image

Adding bitmap images to the document can be done with a couple of lines - the first loads the image, the sec
places it on the page. Images can be read directly from a file (the library can parse JPEG, PNG, GIF and TIFF ima
or loaded from g ava. awt . | mage. This gives enormous flexibility - bitmaps can easily be created using normal
j ava. amt methods, or an extension library lil&un's Jimi librarycan be used to load PCX images, Adobe
Photoshop™ files and many other formats.

When embedding a bitmap image, there are a few points you should remember.

1. Transparency is poorly supported in PDF prior to Acrobat 5.0 - earlier versions were limited to "maskec
transparency (as used in GIF and 8-bit PNG images) where a single color can be flagged as transpar
Additionally, PostScript limitations in Acrobat 4.0 and earlier may cause large images to be rendered withol
transparency when printed in Acrobat 4.0 - see the APl documentation for more info.

2. Most computer monitors have a resolution of 72 (Windows) or 96 (Macintosh) dots-per-inch, which means
200x200 pixel bitmap will take between 2 and 2.8 inches on the screen. When printing an image to a hi
resolution printer however, the minimum you can get away with is probably around 200dpi for a color imag
and 300dpi for black and white, otherwise the image is going to start to get "blocky". Depending on the type
image you're embedding you should generally use bitmidpast 3 times the size you would use for on-screen
viewing if you want to print the PDF.

Here's an example of what we mean. The first logo is embedded at 200 dpi, the second is at 72dpi. Print the docur
out or zoom in for a closer look, and see the difference.

The DPI of the image in the document is the number of inches the bitmap takes up, divided by the number of pixel
the bitmap. So a 200 pixel wide bitmap sized to take up 72 points (1 inch) in the document has a resolution of 200
All image formats except GIF can specify the DPI of the image (if it's not specified it defaults to 72dpi), so th
example above displays the image at the point-size the artist intended. For more control, it's possible to extract th
and Y resolution of the image using tpet DPI X() andget DPI Y() methods.

Pagel9 of 42

http://java.sun.com/products/jimi

Vector Graphics

It's also possible to draw "line-art" style images directly into the PDF. Here's an example that draws a circle of rad
100 in the center of the page, filled with blue stars on a red background and with a black border.

public void drawCircl e(PDFPage page)
{

PDFStyl e style = new PDFStyl e();

styl e. set Li neCol or (Col or. bl ack) ;

styl e.setFill Col or (new PDFPattern("Star", 0, 0, 50, 50, Col or. red, Col or. bl ue));
page. set Styl e(styl e);

page. drawCi r cl e(page. get Wdt h()/ 2, page. get Hei ght()/2, 100);

© 6y =) @ @ > 90 =

—

Example 11 - Drawing a circle

Not terribly difficult. As well as drawing circles, there are several other shapes that can be easily drawn.

drawCircle / drawEllipse drawLine drawArc

drawRectangle drawRoundedRectangle drawPolygon

Remember that every shape except the lines or the arcs can be drawn as outlines, solid atdpsthdsin whether

a fill, a line color or both is specified in the current style. If these shapes aren't enough, the more péifnitive
methods allow you to assemble complex shapes yourself using individual elements. This example draws a rectar
with the top of the rectangle replaced by a wavy line.

public void drawPat h(PDFPage page)
{
PDFStyl e style = new PDFStyl e();
styl e. set Li neCol or (Col or. bl ack) ;
styl e.setFill Col or (Col or Patt ern. star (Col or.red, Color.blue, 20));
page. set Styl e(styl e);

page. pat hMbve(100, 100); /I Always start with pathMove
page. pat hLi ne(100, 200);

10. page. pat hBezi er (130, 300, 160, 100, 200, 200);

11. page. pat hLi ne(200, 100);

12. page. pat hCl ose();

13. page. pat hPai nt () ;

© @2 = ey O > BN =

Example 12 - Drawing a complex shape with path operations

Page20 of 42

Thepat hLi ne, pat hBezi er andpat hAr ¢ methods are available to build up your shape. The only things to
remember when drawing a shape with la¢ h operators is to start wifhat hMove and end witlpat hPai nt .

Graphics state: Transforming the page

There are a few additional methods in BigFPage class which can be used to alter the page itselfsEhdJni t s
method has already been mentioned, allowing you to redefine which corner of the page is (0,0) and which units
want to measure the page in. More interestingly,rtbheat e method can rotate the co-ordinates of a PDF page
around a specified point. Take a look at the watermark on each page of this document for an example.

Other useful functions do with with the graphics statesanee andr est or e. These allow you to save the current
state of the page to a "stack" - it's good practice to save before doing a transformation and restore afterwards re
than apply a reverse transformation. For example, here's how to draw some text on the page at 45° without affectin
future operations as well.

public void drawRot at edText (PDFPage page, String text, float x, float vy)
{

page. save();

page.rotate(x, y, 45);

page. dr awText ("Hel | o, World", x, vy);
page.restore();

NG >ON

Example 13 - the Rotate, Save and Restore methods

Graphics styles

Various aspects of tHeDFSt y| e class can be used to alter the look of the various graphics methods (although the
also work on text, they're more likely to be used with graphics elements).

The set Li neW dt h method sets the width of any lines that are drgwn,

including outlined text and shapes. The width can be any positive numbagr, and
is specified in points. Setting a line width of zero is allowed and instructs the
viewing device to create tht&innest line possible on that device. In Acrobat
Viewer, this is 1 pixel wide, regardless of the zoom level of the document, while

[on a high resolution printer this may be nearly invisible. Because of it's device
dependent nature, this is not recommended by Adobe.

Theset Li neCap method changes how the end of lines are drawn. The dé¢fault
option isButt cap, where the stroke is squared off at the endpoint of the|path
and there is no projection beyond the end. Secorbusd cap, causing 3
semicircle with a diameter equal to the line width to be drawn at the end pf the
line. Finally theSquare cap, where the stroke continues beyond the endpoint of

the path for a distance equal to half the line width, and is then squared off

Theset Li neJoi n method changes how two line segments are joined| The

default is aMiter join, where the outer edges of the two strokes are extended

until they meet at an angle, as in a picture frame. For extremely sharp angles a
bevel join is used instead. Second i®aund join, where a circle with &
diameter equal to the line width is drawn around the point where the two
segments meet and is filled in, producing a rounded corner. Finallgetae
join, where the two segments are finished with butt caps and the resulting notch
is filled with a triangle.

AN

Page21 of 42

Theset Li neDash method allows you to change the line into a sequenge of
on and off line segments. The default is a solid line, the result of calling

set Li neDash(0, 0, 0) . The second example here is a sequence of 5 goints
on, 5 points off, fromset Li neDash(5, 5, 0). The third example is 1p
points on, 5 points off, froreet Li neDash(15, 5, 0) . The final example i$
the same as number 3, but fitese of the pattern has been changed by calling
IEEEEEEEEEEEEENN] set Li neDash(15, 5, 10) . The pattern of 15 on, 5 off, 15 on, 5 off starts ften
pixels in, and the result is 5 on, 5 off, 15 on, 5 off, 15 on and so on.

Section 2. Importing and Editing existing documents

In version 1.1.12 we added tRP®FReader class, which allows existing PDF documents to be read, modified and
written. This framework has been completely overhauled for version 2.0, and is how much more stable and ab
twice as fast. Th@DFReader class, which is required to read an existing document, is part Biktéreded Edition

of the library - you'll need to remember this when deciding which version to purchase.

One of the most common uses for the Extended PDF library is filling a blank form with data, possibly concatenati
all the results together and then sending the document either back to the browser or to sdné et r eam A
read through the following section will be helpful to anyone planning to implement something like this.

So how do you import and edit a PDF? Let's take a fairly typical example first - the concatenation of sever
documents into one.

1. inport java.io.*;
2. inmport org.facel ess. pdf 2. *;
3.
5. public class Concatenate
6. {
7. public static void nain(String[] args) throws | CException
8. {
9. PDF out = new PDF();
10. for (int i=0;i<args.length;i++) {
11. FilelnputStreamin = new Fil el nput Streanm(args[i]);
12. PDFReader reader = new PDFReader (i n);
13. in.close();
14. PDF pdf = new PDF(reader);
15.
16. out . get Pages() . addAl | (pdf. get Pages());
17. }
18. out . render (new Fi | eCut put Strean{" Concat enat ed. pdf ")) ;
19. }
20. }

Example 14 - Concatenating several documents

Significant lines here include line 12 and 14, where the next PDF is read in flonpah St r eam(in this case a
Fi | el nput St r eam but they could be read in from a database, a URy,ta&Ar r ayl nput St r eamor similar -
anyl nput St r eamwill do).

The next interesting bit is line 16, where all the pagesreme=d, not copied, from the PDF we just read in to our
output PDF. This is done by manipulating the list of pages returned lgetHeages method in thd’DF class. This
returns a standajdava. uti | . Li st, which can be manipulated in any of the usual ways.

The trouble with page moves

The ability to move pages from one PDF to another also doesn't come freely. Although the library takes care of a lo
the "dirty work", the programmer must also be aware of what he does when it comes to links within the docume
Imagine a document containing two pages, with page 1 containing a hyperlink to page 2. If page 2 is deletec
warning will be printed t®yst em er r and the hyperlink action removed. The same applies to bookmarks linking to
that page (which aneot copied when a page is copied), and form fields, which may exist on more that one page at

Page22 of 42

time and thereforare not transferred when moving pages (although they can be moved separately). Here's a list
things to watch for when manipulating a documents pages.

» A page can only ever be in one PDF at a time, and can only exist in a PDF once. If you want to copy a page, ra
than move it, you should clone it first, like so:

PDFPage copy = new PDFPage(ori gi nal);
newpdf . get Pages() . add(copy) ;

 If you're cloning all the pages in the document, why not clone the entire document instead? This is almost certai
going to be faster, and gets around several nasty potential problems with form fields: Try something like this:

PDF tenpl ate = new PDF(new PDFReader (new Fi |l el nput Strean(" Tenpl ate. pdf")));
PDF out = new PDF();
for (int i=0;i<10;i++) {

PDF copy = new PDF(tenpl ate);

out . get Pages() . addAl | (copy) ; /l out now has 10 copies of "Template.pdf"

@ Gl > €99 =

}

Example 15 - Cloning a document

» Manipulating documents containing Form Fields can cause confusion - so much so that we've givamnit it's
section

Stamping documents

There are some other useful things you can do with a document that's been read in. First and most obvious, you
write to it's pages in the same way as with a newly created document. For instance, to add a message or waterme
every page:

1. PDFStyle style = new PDFStyl e();
2. style.setFont(new StandardFont (St andar dFont . HELVETI CA), 12);
3. style.setFillCol or(Col or. bl ack);
4.
5. PDF pdf = new PDF(new PDFReader (i nputstrean));
6.
7. for (int i=0;i<pdf.getPages().size();i++) {
8. PDFPage page = pdf. get Page(i);
9. page. set Styl e(styl e);
10. page. dr awText (" Recei ved "+new Date(), 10, 10);
11. }
12.
13. pdf.render (out put streanj;

Example 16 - Stamping each page of a document

Power users might like to try using translucent colors and theat e method to stamp text on top of the page.
Another alternative would be to create and attach a new Skamgt at i on for each page. All of these options are
demonstrated in th&t anp. | ava example included in the examples supplied with this library.

Page23 of 42

These methods work fine with Acrobat 5.0, but earlier versions don't support transparency and so would result in t
being obscured. One method we found quite effective is to write the stadapthe current contents of the page,
rather than over top. This is done with geekSt art method, which moves the page "cursor” to the start of the
pages contents. This method isn't bullet-proof - some documents clear the background first, which will overwrite t
stamp - but it works in many cases. Here's the above example with two new lines (9 and 12) added to draw the st
under any current content on the page.

1 PDFStyl e style = new PDFStyl e();
2 styl e. set Font (new St andar dFont (St andar dFont . HELVETI CA), 12);
3 style.setFill Col or (Col or. bl ack) ;
4.
5. PDF pdf = new PDF(new PDFReader (i nputstrean));
6.
7. for (int i=0;i<pdf.getPages().size();i++) {
8. PDFPage page = pdf. get Page(i);
9. page. seekStart(); /I Move to start of page stream
10. page. set Styl e(styl e);
11. page. dr awText (" Recei ved "+new Date(), 10, 10);
12. page. seekEnd() ; /I Move back to the end.
13. }
14.
15. pdf.render (out put streanj;

Example 17 - Stamping each page under the current content

Stamping Whole Pages - a Page is a Canvas

Another possibility is to use the contents of a page as an image or "Canvas", to be painted onto another page.
visited canvases briefly in tiRatternssection, but essentially a Canvas is like it's equivalent in the art world; a sheet of
virtual paper with markings on it. A page is simply a canvas with optional annotations on top.

This allows for some interesting ideas. Rather than cloning a page, you could simply turn it into a canvas and "draw
onto another page, as you would an image. The effect is visually similar to cloning a page, although the concepts
quite different. Which method you choose depends on what your needs are.

One the one hand, when converting to a PDFCanvas you will lose any form fields and annotations on the page - «
the fixed contents of the page will be taken. On the other hand, by treating a page as an image and repeatedly dra
it over and over, the image-page only needs to be saved in the PDF once. For documents that contain one or two f
repeated over and over, this can produce much smaller files. Here's an example of how you might do this - we w
some information from an abstract set of records onto a sequence of pages:

1. PDFStyle style = new PDFStyl e();
2. styl e.setFont(new StandardFont (St andar dFont . HELVETI CA), 12);
3. style.setFillCol or(Col or. bl ack);
4,
5. PDF tenpl at epdf = new PDF(new PDFReader (i nput stream);
6. PDFCanvas tenpl ate = new PDFCanvas(tenpl at epdf. get Page(0));
7.
8. PDF pdf = new PDF();
9. while (hasMoreRecords()) {
10. PDFPage page = pdf.newPage(PDF. PAGESI ZE_A4) ;
11. page. drawCanvas(tenpl ate, 0, 0, page.getWdth(), page.getHeight());
12. page. set Styl e(styl e);
13. page. dr awText (recor d. get Nane(), 100, 100);
14. page. dr awText (recor d. get Address(), 200, 100);
15. }
14.
15. pdf.render (out putstrean;

Example 18 - Using a page as a template canvas

Page24 of 42

One thing to note here is that the canvas and text are both being drawn onto the page, rather than form fields b
filled out, which is obviously a lot easier. We can't use a form in this case, simply because a canvas doesn't h
annotations. Of course, there's nothing to stop you going through the original foemghat epdf , and finding out
where the fields are positioned by checking their annotations, and writing the text to the same position in the n
PDF... but we'll leave that as an exercise for the reader.

Completing Forms

We'll cover forms in more deta@lsewherebut we want to add a little bit here on batch completion of forms - the
focus here is not so much on creating form fields and how they work, but on various "Gotchas" that can occur wk
trying to complete large numbers of forms in a batch.

First, some things you should know. Each PDF can have only one form (unlike HTML which can have many forms
Each field has a hame, which much be unique across the form (and therefore, the document). Somewhat confusing
field may have more than one visible appearance in the document - each represented by a special type of Annot:
called a "Widget". Although each may have a different style and be on a different page, they must all have the sg
value. Finally, forms take up a lot of space in the document.

With that in mind, let's look at some typical situations and the things that can go wrong. Lets say you have a templ
PDF with a form. This needs to be completed for each customer and the results concatenated together into one |
document. Here's a way to do it that's clear, simplersonl.

1. PDF tenplate = new PDF(new PDFReader (tenpl atestrean);
2. PDF out = new PDF();
3.
4. while ((record=nextRecord())!=null) {
5. PDF cl one = new PDF(tenpl ate);
6. Form form = cl one. get Form() ;
6. ((Formrext) form get El ement (" Name")) . set Val ue(record. get Name()) ;
7. ((Formrext) f orm get El ement (" Phone")) . set Val ue(record. get Phone());
8.
9. out . get Pages() . addAl | (cl one. get Pages());
10. out . get Form() . get El ement s(). put All (form get El ements());
11. }

Example 19 - The incorrect way to concatenate documents with forms

The idea here is fairly simple. For each record we clone the template (line 5), complete the form (line 6 and 7), tt
move all it's pages (on line 9) and all it's form elements (on line 10) to the output PDF. The problem is that after t
first record has been added, thet PDF will already contain a FormElement called "Name". Trying to add another
one will cause an error.

There are two ways around this. The first method is to flatten the form. Flattening a form permanently stamps all
elements onto the page, preventing them from being altered, but it does have the pleasing side effect of drastic
reducing the resulting file size. This would be done in the example above by adding fher lnd | att en() at

line 8. We could also remove line 10 altogether, as once a form is flattened there are no fields left to move.

This solution is the one we'd generally recommend. However, if you need the combined form to be editable, your o
option is to rename the form elements so that each one has a unique name. The easiest way to do this is to ca
Form. renameAl | method - perhaps adding at Iline 8 something like

formrenanmeAl I ("", " _"+(recordnumt+)) ;. This would add a unique suffix to each element - " 1" for
the first record, *_2" for the second and so on.

Page25 of 42

Interaction: Actions, Hyperlinks and Annotations
Actions

ThePDFAct i on class allows the user to interact with the document. Actions are used in several places throughou
PDF.

» Each bookmark uses an action to determine what happens when it's clicked on

* An action can optionally be run when a document is opened, closed, printed or saved, by calling tt
PDF. set Act i on method

» An action can optionally be run when a page is opened or closed, by callPigfRage. set Act i on methods.
« Annot at i onLi nk annotations have an action associated with them, which runs when they're clicked on.

« A form element and it's Widgets can have actions associated with them, to do things when a field receives foc
when a key is pressed, it's value changed, and so on.

A number of different types of action are provided for inRIE-Act i on class. The variougoTo actions allow the

user to navigate to a specific page in the document, and different variations exist to bring the page up zoomed to fi
to have a specific rectangle visible. New in version 1.1 wergafi®@URL action (which is used in the hyperlink
examples below), thpl aySound action which should be fairly obvious, and one other which isn't ndmed

action.

This last one will probably only work under Adobes own Acrobat viewer, but allows a measure of interaction with th
viewer itself. A named action corresponds to selecting an action from the drop-down menus in Acrobat, and allow 1
user to print the document, quit the browser, search for text and so on. This is poorly documented in the P
specification, but what information we have is available in the APl documentation for this method. If you're trying t
recreate a specific action that you've seen in Acrobat, what we suggest is create a document in Acrobat with -
action, then run it through tHaunp. j ava example to see what it's called.

Six other action types are mostly used with forms - fthe nSubmi t, f or TReset, f or ml nport Dat a,

f ormJavaScri pt , showW dget andhi deW dget . These are usually applied to a form elements annotation via
theW dget Annot ati on. set Acti on andFor nEl enent . set Act i on methods, and are covered separately in
the section on forms.

Hyperlinks

A special subclass of annotation is the Hyperlink, represented Bntia at i onLi nk class. Like all annotations,
these sibbove the page content, rather than being a part of it.

An Annot at i onLi nk annotation takes BDFAct i on, which can be any of the actions available with the library -
a link to a URL or another part of the document, play a sound, print the document and so on.

Page26 of 42

Positioning a link to match some text placed on the page means knowing where the exactly text is. There are two w
to do this. The first, for those using thegi nText andendText, is to call thebegi nText Li nk and
endText Li nk methods in thé°DFPage class. The second is to get the co-ordinates of the text or object you're
trying to make a hyperlink, and use those to set the rectangle of the Annotation by calBeg Rect angl e
method. The co-ordinates are easily obtained by getting the rectangleLafytbat Box. Box used to position the

text. For example:

Layout Box box = new Layout Box(100) ;

box. addText ("sone text here");

Layout Box. Text |inktext = box.addText ("hyperlink goes here");
box. addText ("sonme nore text here");

box. fl ush();

page. dr awLayout Box(box, 200, 300);

do {

Annot ati onLi nk |ink = new Annot ati onLi nk();
11. | i nk. set Rect angl e(200+! i nkt ext. get Left(), 300+l i nktext.getBotton(),
10. 200+l i nkt ext . get Ri ght (), 300+I i nkt ext. get Top());
11. page. addAnnot ati on(| i nk);
12. i nktext = |inktext.getNextTw n();
13. } while (linktext!=null);

'_\
@O RO >N =

Example 20 - Creating Hyperlinks over a LayoutBox.Box

Key things to note here are that we have to loop around the text boxes returgpetdN®xt Twi n, because it's
possible that the text we want to make a hyperlink was split over two or more lines. Also we need to add the
ordinates of thé.ayout Box to the hyperlink, as the co-ordinates returnegélyLef t () and friends are relative to
theLayout Box. For creating hyperlinks over images and so on, it's a lot easier - just specify the co-ordinates direc
in theAnnot at i onLi nk. set Rect angl e method call.

The second method is to use thegi nText Li nk andendText Li nk methods of thé’DFPage class to add
hyperlinks in the middle of a line of text. Here's how:

1. public void showTextLi nk(PDFPage page)
2. {
3. PDFActi on action = PDFActi on. goToURL(new URL("http://big.facel ess.org"));
4.
5. page. begi nText (50, 50, page. get Wdt h()-50, page. get Hei ght ()-50);
6. page. dr awText (" Thank you for choosing ");
7. page. begi nText Li nk(action, PDFStyle. Ll NKSTYLE);
8. page. drawText ("t he Bi g Facel ess PDF Library");
9. page. endText Li nk() ;
10. page. endText (f al se);
11. }

Example 21 - Creating Hyperlinks using beginTextLink/endTextLink

Thebegi nText Li nk method takes two parameters, the firBDEAct i on, as described above, and the second a
PDFSt yl e. The style is optional (it can be left null for no effect), but is a convenient way of marking the hyperlinkec
region of text. Here we use the predefined $BESt y| e. LI NKSTYLE which underlines the text in the same way

as an HTML hyperlink (as we've done in this document), but a user-defined style can be used instead for a differ
effect. This method handles the case where a hyperlink wraps at the end of the line, or even at the end of the page.

Other Annotations

A good number of annotations are defined in the PDF specification - the ability to attach files and other useful featu
are all there. Many of these require the full version of Adobe Acrobat, and aren't supported by this library at tl
moment.

Page27 of 42

Two types of annotation that we do support arentite andrubber-stamp annotations. Thaote annotation is the
electronic equivalent of adding a Post-It® note to your document. This can be clicked on by the viewer to view i
contents or dragged about the page to a different location.

Notes are represented by thenot at i onNot e class, and stamps by thanot at i onSt anp class we've already
mentioned above. Both of these can be drawn in a number of different pre-defined styles, and custom Stamps ca
created by using BDFCanvas, in the same way ascaistom patternThis is useful for applying "Received on DD-
MMM-YYYY" type stamps. Alternatively, advanced users may pre-define and save custom patterns. How? Read on

Forms
Users of theExtended Edition of the library can read and creaté)
PDF forms, also called "AcroForms". Users who just want|toText Box | |
complete a pre-existing form will probably find this sectign Ciheies Box |Monda |
useful, but may get more mileage from f@empleting Forms y
section. Check Boxes [O (I

Radio Buttons O @) O
These are part of a PDF document, in the same wdyoa n -
tag in HTML creates a form on a web page. Like HTML fornis, B | Sl |

PDF forms can contain text-boxes, radio buttons, checkbokes,
drop-down lists and push buttons, can reference JavaScript functions or submit the form to a website.

Forms are not the simplest area of a PDF document to understand, and if you're just starting with forms this document
is the wrong place to start. Forms can be created from within Acrobat, and there are several guides with that product
and on the net which explain about form fields, JavaScript, form submission and so on.

Each PDF document has a single form (unlike HTML, where one page may have several forms), and the element
this form may be spread across several pagesPDReget For m() method is used to return the documents form,
and from there the various methods in Bog mclass can be used to set and retrieve elements. It's important to note
that because each document can only have a single form, each field in the form must have a distinct name.

Each form element is a subclasgof nEl enent , and has a value which can be set or retrieved viadh®&al ue
andget Val ue methods. For many applications of forms, where the values on an existing form are read or written t
this is as much of the API that will be required.

For creating new forms, we need to get a little deeper. New elements can be created and added to the form usin
For m addEl erent method - don't forget this last step, or you'll be wondering why your fields aren't showing up!.
All form elements can have a style set with ste¢ St yl e method, although not every feature of a style can be used
in a form field.

Most form elements have a visual representation on the page - some, like radio buttons, have several, whereas d
signatures (covered later) often have none. This representation is a special éBs®\ohot ati on called a

W dget Annot ati on. The list of annotations associated with an element are returned by the
For nEl enment . get Annot at i ons method.

Finally, one of the more interested aspects of form elements is the triggers or "Events" which can occur. Just |
HTML, it's possible to call a JavaScript function (or other action) when the value of a field is changed, when tt
mouse enters a field or when a key is pressed inside one.€efh#t i on method can be called on the elements'
annotations or on the element itself (depending on the action you want to set), to submit a form, run some JavaSc
jump to another page or any other action you can think of. The example on this page calls a JavaScript function w
the submit button is clicked.

Page28 of 42

Let's start with a simple example. Reading and writing values to an existing form is very easy, and probably for m
Form users, this is as far as you'll need to go:

PDF pdf = new PDF(new PDFReader (new Fil el nput Strean{"tenpl ate. pdf")));
Form form = pdf. get Form();

For nText nanme = (ForniText)form get El ement (" nanme") ;
System out. println("The name field was set to "+nane. get Val ue());

Ne» @l >

nane. set Val ue("J. Quentin Public");

Example 22 - Setting a form field

As you can see, you first call tigeet For m() method to get the documents AcroForm, thengbeEl enent
method on that form to return a specific element (there are other ways to do thir thelass has methods that
return avap of all the elements, for example). Once you've got the element, you can get or set the value using t
get Val ue andset Val ue methods as required. When the document is eventually written out usingrider
method, the form is written out with the last values that were set.

Creating your own form fields isn't that much harder. All the elements have a consistent interface. Starting with t
basics, here's how to add a text field to a new PDF.

PDF pdf = new PDF();
PDFPage page = pdf.newPage(PDF. PAGESI ZE_A4) ;
Form form = pdf. get Form() ;

For nText text = new For nifext (page, 100, 100, 300, 130);
form addEl ement ("nytextfield", text);

G X en @1l > B [=

pdf . render (out put streanj ;

Creating a new Form element

The text field is placed in the rectangle 100,100 - 300,130 on the specified page. The field uses the default style
form elements - you can change this by callinggbeText St yl e andset Backgr oundSt yl e methods on the

For mobject, or you can customize the style for a singlelget Annot at i on by calling the same methods -
following on from the example above, something lilext . get Annot ati on(0). set Text Styl e(styl e)

would do it.

Form Actions

It's possible to set actions on a form elements annotations, which can range from simply submitting the form to call
complex JavaScript functions. The action can be any of the actions created®DfF#ued i on class, some of which
we've already seen. Here's a quick summary.

Page29 of 42

Action Description

goTo Jump to a specific page in the current document

goToURL Jump to a specific hyperlink. As you would expect this requires a web
browser to be installed.

pl aySound Play an audio sample

named Run a named action

showEl enent Display an annotation that was previously hidden

hi deEl enent Hide an annotation that was previously visible

f or nSubm t Submit the form to a specified URL on a server

f or nReset Rest the form to it's default values

form nportData Import an FDF file into the form

f ormlavascri pt Run a JavaScript action

Table 5 - Form Actions

ThegoTo, pl aySound andnamned actions are covered elsewhere in the document, so we'll briefly cover the form-
specific action$ or nSubmi t andf or mJavascri pt -for nReset is fairly obvious, and or m npor t Dat a is
for advanced use, and is better described in the PDF specification.

First,f or nSubmi t . As you might have guessed, this allows the form to be submitted to a server. Like HTML forms
which can be submitted via GET or POST, there are several options for how to submit the form, including HTT
POST, FDF (to submit the form in Adobes own FDF format), and users of Acrobat 5.0 or later can submit the form
an XML document or can actually submit the entire PDF document - wordy, but good for digitally signed documents

Next, thef or mlavaScri pt option, as demonstrated in the sample form above. Acrobat comes with a version o
JavaScript similar, but not identical to the JavaScript supplied with most web browsers. Although the syntax
identical, the object model is very different - browsers use the Document Object Mdd€Mprwhereas Acrobats
object model is documented in it's own JavaScript guide in a file dsdledJs. pdf supplied with Acrobat 5.0. It's

also currently available for download fromttp://www.planetpdf.com/codecuts/pdfs/tutorial/AcroJS. pidvaScript
actions can define JavaScript code directly, or call a function in the "document wide" JavaScript, which can be set
thePDF. set JavaScri pt method. This is recomended for anything but the simplest JavaScript.

Finally, theshowW dget andhi deW dget actions. These can be used to show or hide an existing widget
annotation. This can be used to interesting effects, as you can see by taking a look at tf
exanpl e/ For nWoodoo. j ava example supplied with the PDF library.

Events

So when and how can you use these actions in a form? The most obvious time an action is required is when usi
For nBut t on, for example to submit a document. You can callsbeAct i on method on the buttons’ widget to
determine what to do when the the user clicks on it. Some events apply to the field and some to the fields annotat
(see the API documentation for detail), and most of them will be familiar to most JavaScript programmers, and inclu
onMbuseOver, onFocus andonChange. Example uses could include verifying keyboard input in a text box by
setting theonKeyPr ess handler to ensure only digits are entered, or maybert@eher Change handler, which is
called whenother fields in the document are changed - useful for updating a read-only field with the total of othe
fields, for example. In fact, we do just this in tweanpl es/ For mVoodoo. j ava example which we mentioned
earlier.

Page30 of 42

http://www.planetpdf.com/codecuts/pdfs/tutorial/AcroJS.pdf

Digital Signatures

Since version 1.1.13, PDF documents may be digitally signed by those runnibgeided Edition of the library.
These are useful for two main purposed - one, to identify the author of the document, and two, to provide notice if
document has been altered after it was signed. This is done by calculating a checksum of the document, and
encrypting that checksum with the "private key" of the author, which can later be verified by a user with the fu
version of Adobe Acrobat or Acrobat Approval™, althougt the free Acrobat Reader, by comparing it with the
corresponding public key.

Note: Applying Digital Sgnatures to a document requires some basic knowledge of public/private key cryptography,
which is a weighty topic. We provide a brief description here, but some knowledge of public key cryptography is
assumed.

Digital Signatures are implemented in Acrobat via a plug-in or "handler". There are a number of handlers on t
market - at the moment we are aware of five or six. The two main varieties are those that use some sort of grap
table to input a handwritten signature, and those built around a public/private key infrastructure or "PKI". We current
support signing and verifying documents intended for the Adobe and VeriSign® handlers, both of which use publ
private key pairs to ensure the documents authenticity.

So, how do you sign a document? As this is a userguide rather than a reference, we'll step through how to do it witt
going into too much detail. See the API class documentation féotheSi gnat ur e class for more depth.

Signing documents with the Adobe "Self-Sign" Handler

First, we'll cover the Adobe Self-Sign handler, which is supplied with every version of Adobe Acrobat. This handle
requires a self-signed key, which you can generate usirdgetheool application that comes with Java. To generate a
key, run the following command:

keyt ool -genkey -keyalg RSA -sigalg MD5w t hRSA -keystore testkeystore -alias mykey

This will ask a number of questions and will eventually save the key to the file "testkeystore". If you're going to ti
this, it's important to enter a two-letter country code (rather than leaving it set to "Unknown"), otherwise Acrobat wi
be unable to verify the signature.

Once you have the private key and it's accompanying certificates stored in the keystore, the next trick is to sign
document. One method is just to use @gn. j ava example, supplied in the examples directory. If you want to
write your own code however, there's not much to it.

import java.security.KeyStore;
PDF pdf = makeMyPDF(); /I Create your PDF document somehow

1

2

3

4.

5. KeyStore keystore = KeyStore.getlnstance("JKS");

6. keystore.load(new Fil el nput Strean("t estkeystore"), storepassword);
7

8

. FornSi gnature sig;
9. sig = new FornSi gnat ure(keystore, "nykey", secret, FornSi gnature. HANDLER SELFSI GN);
11. pdf.get Form() . addEl enent (" Test Signature", sig);

13. pdf.render (new Fil eCut put Strean{"si gned. pdf"));

Example 23 - Signing a document using the Self-Sign handler

First, we create and load the KeyStore on lines 5 andt6or epasswor d is achar[] array containing the
password to decrypt the keystore. Then we actually create the signature on line 9, by specifying the keystore, the
alias ("mykey"), the password for that key (alsohar []), and the type of handler we want to verify this signature.
Finally, on line 11 we add that signature to the PDF documents' form.

Page31 of 42

Signing documents with the VeriSign Handler

To use VeriSign signatures you'll need the VeriSign "Document Signer" handler, freely available for download fro
http://www.verisign.com/products/acrobatThe signing procedure is the same except you change
HANDLER_SELFSI GN to HANDLER_VERI SI GN. The difference comes in how you acquire the key, as (unlike the
Self-Sign handler) the key must be certified by VeriSign.

Luckily you can get one for free by visitingttp://www.verisign.com/client/enrolimentlust follow the "trial
certificate” instructions and you'll be issue with a private key and signed certificate by VeriSign which is good for ¢
days, and is installed into your browser. Getting it out of your browser into a form we can use from Java is the ne
trick. For Internet Explorer:

» Go to the "Tools" menu, select "Internet Options"

» Select "certificates"” (figure 1)

» Select the certificate you want to export and click "Export"
» Select "Yes", as you do want to export the private key

* Include the entire certification path (figure 2)

» The file is saved as a PKCS#12 keystore

For Netscape, go to the "Communicator" menu, select Tools -> Security Info". Then select the certificate off the |
and choose "Export".

Internet Options EHE

Generall Security Content |E0nnections| Programsl Advancedl

— Content Advigor

@{ Ratings help you contral the Intemet content that can be Certificate Manager Export Wizard | %] I

viewed on thiz computer. . .
Certificate Export File

Enable... | Seftings. . | Cerlificates can be exported in a variety of formats.
— Certificate: Select the format you want to expart:
% Use certificates to positively identify pourself, certification € DER encoded birian %509 [CER)
@l authorities, and publishers. = : :
| Bazefd encoded 509 [.CER]
Publizhers... | . .
z | Cryptographic Message Syntax Standard - PKES #7 Certificates [.p7h)

— Perzonal information / : ™| Include &ll certificates in the certification path if possible

& Perzonal Information Exchange - PKCS #12 [PR}
n AutoComplete stores previous entries | . . b . ;
i) sugggsts matcheg e AutoComplete. . ¥ Include all certificates in the certification path if possible

¥ Enable strong protection (requires E 5.0, NT 5.0 or sbove)

Microzoft Profile Assistant stores wour | |
perzonal information. e < Back I Mext > I Cancel
Figure 5b
QK | Cancel | Lpply |
Figure 5a

To acquire a permanent key rather than a temporary one, you need to purchase one from a CA like VeriSign (o
CA's can be used, although it's unlikely that VeriSigns plugin for Acrobat 5 will verify these out of the box. Acrobat
has a general PKI plugin which should theoretically work with any CA in the Windows trusted CA list, although wha
happens on non-windows is anyones guess).

VeriSign sell a bewildering number of digital products, but in order to sign documents we recommend the "Coc
Signing" key available dittp://www.verisign.com/products/signing/codéey sell digital IDs specifically for signing

JAR files, which is the one you want. The process for this is a little different. You need to follow exactly the san
process as you would do to acquire a key for signing JARs, which is to say the following steps:

1. Use thekeyt ool program to generate an RSA/MD5 key, in exactly the same way as described above for tr
Self Signsignatures.

2. Runkeytool -certreq -alias mykey to generate a certificate signing request for your new key. This
will output a block of Base64 encoded data, which you need to cut and paste into the appropriate section
VeriSigns website when prompted.

Page32 of 42

http://www.verisign.com/products/acrobat
http://www.verisign.com/client/enrollment
http://www.verisign.com/products/signing/code

3. Once you're approved, the CA will send you a certificate reply chain. You need to copy this chain into yot
keystore by runningkeyt ool -inport, e.g.keytool -inport -alias nykey -file
veri si gn. cer. The import must use the same alias as the original key - here we're using "mykey".

So now you have your private key and accompanying certificates in a Java keystore. If you created a test certificate
IE or Netscape, the keystore is a PKCS#12 keystore, an industry standard format which works out of the box in J
1.4, but with earlier versions will require the installation of an appropriate Java Cryptography Extension, or JCE. T
homepage for the JCE range ishép://java.sun.com/products/jcerhich includes a list of providers. We developed
with, and recommend the free JCE provided by "The Legion of the Bouncy Casttel/\yww.bouncycastle.ojg

Just download the package, add the JAR to your classpath and finally register the provider by adding a new line to
JAVA HOMEj re/lib/security/java. security file as follows:

security. provider. 2=org. bouncycastl e.jce. provi der. BouncyCast | ePr ovi der

Once that's done, you can verify things are working by loading the PKCS#12 keystore with the "keytool" progran
use a command similar to the following to list the key details and find out the alias of your private key:

keytool -list -v -keystore nystore.pfx -storetype pkcsl2 -storepass secret

Our alias (sometimes called "friendly name") was a decidedly unfriendly string of about 30 hex digits. No matter
modify the code example above to use this alias instead of "mykey", and change the "JKS" to a "pkcs12". You sho
now be able to sign a PDF document using this key - something you can confirm by loading it into a copy of Ado
Acrobat with the VeriSign handler installed, going to the "Window" menu, selecting "Show Signatures" and verifyini
the signature.

Annotations can be added to digital signatures to give them a visible appearance on the page. For more detail on
see the API, but the short version is that you can add a "standard" appearance just by adding a regular annotation
this (taken from the example above, with line 10 inserted):

8. FornSi gnature sig;

9. sig = new FornSi gnat ure(keystore, "nykey", secret, FornSi gnature. HANDLER SELFSI G\)
10. sig. addAnnot ati on(pdf . get Page(0), 100, 100, 200, 200);

11. pdf.get Form() . addEl enent (" Test Signature", sig);

12.

13. pdf.render(new Fil eCut put Strean{"si gned. pdf"));

Example 24 - Adding an Annotation to a signature

If you want to add a custom appearance, eg a photo or linedraw signature, you can define one on a canvas and p
in as a custom appearance. You'd do this by inserting a new line between 9 and 10 in the example above that lo
like this:

((PKCS7Si gnat ur eHandl er) si g. get Si gnat ur eHandl er ()) . set Cust omAppear ance(canvas, 0,0, 0, 0)

See the JavaDoc API for more detail on this.

Page33 of 42

http://java.sun.com/products/jce
http://www.bouncycastle.org

Verifying Signed Documents

As well as signing new documents, previously signed documents can be verified by comparing their signing signat
to a list of "trusted"” certificates. For example, verifying a document created by the VeriSign plugin is easy:

1. import java.security.KeyStore;
2. import java.security.cert.Certificate;
3.
4. PDF pdf = new PDF(new PDFReader (i nput)); /I Load the PDF
5.
6. KeyStore trusted = FornSi gnature.| oadDef aul t KeyStore(); /I Trusted Certificates
7.
8. Map form = pdf.get Forn() . get El enents();
9. for (lterator i = formkeySet().iterator();i.hasNext();) {
10. String key = (String)i.next();
11. For nEl enent val ue = (For nEl enent)form get (key) ;
12. i f (val ue instanceof Fornfignature)
13. {
14. /1 Verify the signature integrity
15. bool ean integrity = ((FornSi gnature)val ue).verify();
16.
17. /1 Verify the signature covers the whol e docunment
18. int pdfrevision = pdf.get Nunber & Revi si ons() ;
18. int sigrevision = ((Fornti gnature)val ue). get Nunber O Revi si onsCover ed() ;
19. bool ean al | covered = (pdfrevision==sigrevision);
20.
21. /1 Find the first unverifiable certificate. Null means they're all OK
22. Certificate badcert = ((Fornfignature)value).verifyCertificates(keystore);
23. }
24, }

Example 25 - Verifying a signature

This example excerpt shows how to cycle through a documents digital signatures and verify them:

» First checking the documeiritegrity, which confirms the section of the document that the signature covers hasn'
been altered since it was signed.

» Second checking the signatwsape, to confirm that the digital signature covers the entire file - that nothing has
been appended to the file after signing.

» Finally, checking the certificatauthenticity by ensuring that the certificate chain has been signed by a trusted
certificate. Here we've loaded our trusted certificates on line 6, using a method which loads the same keystore tl
used to verify signed JAR files.

This keystore contains the VeriSign Root certificates, so we can easily verify VeriSign-signed documents this way.
what about Adobe's Self-Sign handler? This handler doesn't have the concept of a "trusted root certificate”, and all
keys are self-signed, so verifying against a standard keystore is impossible - the above example would always retu
certificate on line 18. However, Adobe Acrobat 4.0 can export the public key that was used to sign a document, wh
we can load as the "trusted" keystore. To export the public key from the Acrobat "Self-Sign" handler, open Acrob
and go to the "Self-Sign" menu. From there, select "User Settings", click the "Personal Address Book" tab and sel
"Export Key File". The file is exported as an "Adobe Key File", AKF file - another proprietary keystore format -
which can be loaded using tRer nSi gnat ur e. | oadAKFKey St or e method, which would replace line 6 above.
Users of Acrobat 5.0 can export their key as the industry standard PKCS#12 keystore format, &iD&sfider which

can be loaded using ti®r nSi gnat ur e. | oadFDFKey St or e method.

Things to be aware of with Digital Signatures

» Signing a file causes all future changes to it - including the addition of new signatures - to be appended to the file
a new "revision". When verifying a signature it's important to confirm that the signature covers the whole file
Remember that only the latest signature will cover the whole file, as every new signature adds a new revision.
thePDFReader APl documentation for more about PDF revisions.

Page34 of 42

» The Adobe "Self-Sign" handler required each certificate to be personally verified, as there is no concept of sign
or root certificates - something to be think about if you're thinking of using this handler for wide-scale deployment

» Although PDF documents may potentially have more than one digital signature, we currently do not support signi
with more than one.

* TheSi gn. j ava andDunp. j ava examples supplied with the library provide working code examples of signing
and verifying signatures respectively.

» The concept of "trust" is a complicated one with PKI. Although we've blindly decided to trust the keystore supplie
with Java and the certificates it contains, you should make this decision yourself before simply loading the defa
keystore and verifying using ther i f yCer ti f i cat es method (the list of certificates can be extracted from the
FormSignature object for manual verification). Remember when it comes to cryptography it's not whether you'
paranoid, but whether you're paranoid enough.

» Acrobat Reader prior to version 5.1 can not verify signatures at all - the full version of Acrobat or Acrobat Approv:
was required.

Special Features

There are a number of features in the library that we haven't covered in the previous sections. There's no wa
classify most of these so we'll just list them all.

Sound

One of the less useful additions to the PDF format was the ability to play sounds. This feature has patchy supy
amongst viewers, even Adobes own Acrobat viewers. Still, in the best tradition of "feature creep" we thought we'd a
it anyway. ThePDFSound class in the library handles all the formats listed as acceptable by the PDF specification
Microsoft .WAV, Sun .AU and Macintosh .AlFF audio files (no MP3s, sorry). However, we've found only the .WAV
format works on the Windows Acrobat viewers (and even that with some problems), and we can't get a peep out of
Linux machine. Still, for the curious, clitkereto hear this marvelous feature in action (bonus points if you can name
the tune).

Bookmarks

The bookmarks (also called "outlines") feature of PDF documents is probably one of the reasons they're so popul
allowing a true "table of contents" in larger documents. The libraries support for bookmarks is based around t
PDFBookmar k and the familiaj ava. uti | . Li st classes, allowing easy manipulation of complex chains of
bookmarks and simple creation of bookmark trees.

Encryption and Access Levels

Documents can be encrypted to prevent unauthorized access, either by limiting what the user can do with a docur
(ie they're not allowed to print it) or by adding a password. The library supports both the 40-bit encryption used
Acrobat 3 and later, and the 128-bit encryption added in Acrobat 5. This is best demonstrated by a couple of sim
examples. First, here's how to encrypt a PDF with 40-bit encryption so that it can be opened as normal in all versi
of Acrobat, but cannot be printed.

PDF pdf = new PDF()
. create contents of PDF here ..

St andar dEncrypt i onHandl er enc = new St andar dEncrypti onHandl er () ;
enc. set Acrobat 3Level (fal se, true, true, true);
pdf . set Encrypti onHandl er (enc);

@) @il 2> €O Y =

Example 26a - Turning of Printing with 40-bit encryption

Page35 of 42

Here's how to do the same thing, but using 128-bit encryption so the document can only be opened in Acrobat :
later.

PDF pdf = new PDF();
create contents of PDF here ...

St andar dEncr ypt i onHandl er enc = new St andar dEncrypti onHandl er () ;
enc. set Acr obat 5Level (enc. PRI NT_NONE, enc. EXTRACT_ALL, enc. CHANGE ALL);
pdf . set Encrypti onHandl er (enc);

@ @l > O =

Example 26b - Turning of Printing with 128-bit encryption

And here's how to encrypt with 40-bit again, but to require a password to open the document.

PDF pdf = new PDF();
create contents of PDF here ...

St andar dEncrypt i onHandl er enc = new St andar dEncr ypti onHandl er () ;
enc. set User Passwor d("secret");
pdf . set Encrypti onHandl er (enc);

@ Gl > 9 =

Example 26c¢ - Setting encryption and a password

Creating your own predefined canvases

For advanced users who know about PDF internals, it's possible to create your own pre-defined canvases
Resour ceBundl es, which can be loaded in frompa operti es. file. These can be used as stamps, as logos for
signature handlers, or just as an easier way to define complex canvas&sndhat i onSt anp, PDFCanvas and
PDFPat t er n can all take the name of java resource bundle as an parameter.

EachResour ceBundl e must have at leastvd dt h andhei ght attribute to size the canvas, andaat i on
attribute which contains a sequence of PDF stream operations. If the canvas needs to reference any resources,
may also be stored dgrect objects only by giving them an attribute namerofsour ce. X. Y, whereX is the type of
resource (Font, Pattern etc). and the resource name.

Confused yet? Remember, this is for advanced users, and although a useful time-saving device is not necessary. "
we'd recommend to get started is to extract some of the predefined canvases frbaptife j ar file (they're all in

the org. facel ess. pdf 2. resour ces. canvases andorg. facel ess. pdf 2. resources. patterns
packages) and take a look. To get you started, here's a couple of quick examples - the first showing how to cree
pattern of alternating up and down triangles, and the second showing how to create a stamp that simply says "Hellc

alternating up/down triangle pattern

#

wi dt h = 20

hei ght = 20

action =02m821 0181 f 10 4 m18 20 |1 2 20 | f 122 m20 21 20 18 | f

"Hell 0" stanp - draw a rectangle and wite "Hello" in black 24pt Hel vetica

#

nane = Hello

wi dt h = 80

hei ght = 40

resour ce. Font . FO = <</ Type / Font /Subtype /Typel /BaseFont /Hel vetica>>

action =0GO0O0O8040re S 0gl100110 30 Tm/FO 24 Tf (Hello) Tij

Example 27 - Resource files for a custom Pattern and Stamp

Page36 of 42

To the first one, you could save the file as, say, "yourcompany/Triangle.properties"”, then create a new pattern
callingnew PDFPatt er n("yourconpany. Tri angle", 0, 0, 20, 20, Color.red, null). Note

we need to specify the colors, as they're not set in the pattern itself. The second one is a stamp, so you would save
something like "yourcompany/HelloStamp.properties”, then create a stamp by o&lingAnnot ati onSt anp
("your conpany. Hel I o") ;.

(Where this really comes into it's own is that with a bit of effort, you can create stamps in lllustrator and the liki
distill them as uncompressed PDF's, then extract the PDF stream and save it out. This isn't as simple as it sounds
you may wind up having to prefix the extracted stream with some page co-ordinate transformations, but it can be d
- it's just not easy. Remember, this is for advanced users!)

Bar Codes

Thedr awBar Code method of thd’DFPage class allows a bar code to be added at a specific position on the page, ir
one of several encoding systems. The text of the code can optionally be written underneath (as we've done here) ¢
checksum can be added if the algorithm supports it.

||II|II| ||I|I| |||I |II|I ||| I|I|II ""I |I|| |II| The Code 39 barcode is a simple system which can represent
CODE 39 the digits, 26 upper-case letters, the space and a few
punctuation characters. We also support Extended Code 39,

which supports more characters at the expense of even longer

codes.

h I d cod f5b dei impl hich
LT cai represent only the ten digits, atvougn s fairly compact.

h d b de i b d hich
IR o simast e oonsei rnge of snavacire s i

fairly compact. The algorithm chooses the appropriate CODEB
or CODEC variant depending on the data to be encoded,
although this can be overridden (see the BarCode class API
documentation). For EAN128 codes, the newline character
(' \'n") can be used to embed an FCN1 control character into
the code.

The EAN-13 barcode is extremely common, and is generally
used for product labeling (it's the barcode on all your groceries
and books). It must contain 13 digits, the last of which is a
checkdigit.

0 |

012345 678905

012345 " 67890 "5

The UPC-A barcode is the US-only subset of EAN-13. Although
all scanning equipment in the US should be updated to
recognize EAN-13 codes by 2004, in the meantime the
traditional UPC-A codes can also be printed.

||||||||"""l”l""”l The CodaBar barcode can represent the digits as well as the
A12345B characters + -/ $: and the decimal point (.). Special "start/stop
digits" must be used to start and stop the barcode - these are

one of A, B, C or D.

bbbl The PostNet barcode is used by the US Postal Service to
encode ZIP codes. It uses digits only.

II||..|I|I||.“II||.I||.I|I.|||..||.I| The Royal Mail 4-state Customer Code is used by the Royal
Mail in the UK to encode PostCodes. It can represent digits and
the upper case letters A to Z.

Table 7 - Bar Codes

Page37 of 42

Document Layout and Meta-Information

The library can add meta-information about the document to the PDF wiftetienf o method in thé®DF class,
allowing you to set the author, title, subject and so on. This can be viewed in Acrobat by going to the "Docume
Information” or "Document Properties" option under the File menu.

You can also specify various options in the document, instructing the PDF viewer how to display it (for instance, tf
document opens in Acrobat with the bookmarks pane already open). setdayout and

set Vi ewer Pr ef er ences methods in thd’DF class control various settings to do with what to do with the
document when it opens.

XML Metadata (Adobe XMP™ support)

PDF documents supporting the PDF 1.4 specification can include XML meta-information on almost any object in tl
document - pages, fonts, images or the document itself. This XML is formatted using the Resource Descripti
Framework (RDF), and the best place to start with all thisttig://www.adobe.com/products/xmpecause a
discussion of this is well beyond the scope of this document.

This potentially useful extension to the PDF format is supported by the library visethiget aDat a and

get Met aDat a methods which are part of several classes in the library. The XML data can be added or extract
from these objects as a String, which can then be passed to an XML API like SAX or DOM, and from there to
RDF-specific framework like Jena, available frottp://www.hpl.hp.com/semweb/arp.html

Output Profiles - controlling how the document is written

PDF is quite a large specification with several useful subsets. An obvious example of a subset is "PDF's that car
read by Acrobat 4" (which would rule out anything encrypted with 128-bit encryption), and there are several mor
One of the most common is "PDF/X", which is a subset of PDF specially suited for the prepress industry. PDF/X is
ISO standard - there are actually two similar variations called PDF/X-1a and PDF/X-3.

The PDF library supports these various subsets by means @fithpait Pr of i | e class. A PDF can have an output
profile attached to it when it is created, and from that point on any attempt to use a feature outside that subset
result in an exception. For instance, this will cause an exception on line 6, because 128-bit encryption is not allowe
the Acrobat 4 profile:

PDF pdf = new PDF();
pdf . set Qut put Profil e(Qut put Profil e. Acr obat 4Conpati bl e) ;

St andar dEncrypt i onHandl er enc = new St andar dEncrypti onHandl er () ;
enc. set Acr obat 5Level (enc. PRI NT_NONE, enc. EXTRACT_ALL, enc.CHANGE_ALL);
pdf . set Encrypt i onHandl er (enc);

@ @il > €99 =

Example 28 - Using an OutputProfile to control the type of PDF written

A number of profiles exist, and we suggest having a browse throu@htht Pr of i | e class APl documentation
to see what's available.

Page38 of 42

http://www.adobe.com/products/xmp
http://www.hpl.hp.com/semweb/arp.html

Appendix A - Warning messages

A number of warnings are written 8 st em er r by default if unexpected (but not fatal) events occur. These can be
turned off individually by setting the System propeotyg. f acel ess. pdf 2. war ni ng. XXX to any not null
value, whereXXX is the warning code, or all the warnings can be disabled by setting the acel ess. pdf 2.

war ni ng. * property. Be sure you know what you're doing though - they're printed for a reason.

AC1 No named action. A reference to a named action is stored in the document, but an action
with that name doesn't exist. The action is replaced with a "dummy" action that does
nothing.

AR1 No such object. An indirect reference is made to an object that doesn't exist. The sign of a
corrupt PDF, you may nonetheless get lucky and be able to work with it successfully. If you
see this message, our suggestion is you create a fresh version of the PDF and try again.

CS1 JRE has buggy ColorSpace handling. A number of Java runtimes (in our tests, mainly those
by IBM) have very, very poor implementations of the standard java.awt.color package, with
tendencies to throw everything from Exceptions to JNI errors. We work around these as
best as we can, but this is to let you know that you've got one of those JREs.

E12 No name for byte OXNN. Caused by trying to read a form field containing a corrupt value.
The result is that the value of the field will contain some 0x0000 characters instead of the
correct ones.

E13 No Unicode character for name NNNN. This would be caused by trying to read a form field
containing a corrupt value. The result is that the value of the field will contain some 0x0000
characters instead of the correct ones.

E21 No Unicode character for glyph OxNN. This would be caused by trying to read a form field
containing a corrupt value. The result is that the value of the field will contain some 0x0000
characters instead of the correct ones.

F1 Field has no name. Several problems can and do occur with disturbing frequency in
Acrobat, often when a form is deleted - sometimes the job isn't finished properly. This
particular warning indicates that a field has no name and is going to be deleted. As we
mentioned above, dangling fields are common, and if it has no name you can't interact with
it in Acrobat anyway, so it's not doing you any good keeping it around.

F2 Widget has no name. A variation on the same theme as F1.

F3 Widget has no parent. Another variation on the same theme as F1.

F4 Fields point to orphan field. Yet another variation of the same.

F5 We can't imagine how this particular one could occur, but this warning is here just in case. If

it happens, we'd like to see your document!

FE1 Annotation for field has not been assigned to a page. Every form element may have
annotations, but each one of those has to be on a page. If you create an annotation but
don't set it's page, it's no use to anyone, and this warning is thrown when the document is
written to show that it's being removed.

FE2 Annotation for field is on another PDF's page. Like the error above, but this normally occurs
when you've been moving pages around between documents. If document A has a page
and one form field with an annotation on that page, and then you move the page to
document B, when you try and render document A, your form element has an annotation on
page no longer in the document. Like FE1, this warning is thrown and the annotation
removed.

Page39 of 42

FE3

FN1

I v
LB1

LB2

VPl
ori

orz

PD1

PD2

PD3

PD4

Document still contains reference to deleted form field. This isn't too uncommon. It usually
occurs after flattening a documents form or after deleting a field from the form. What it
means is that even though the field isn't included in the form anymore, somewhere else in
the document there is a pointer to it, maybe in an action or in the "logical structure"
information that is added by Acrobat for it's own purposes. These kind of "dangling fields"
are left around by Acrobat all the time - we repair them quietly when a document is loaded -
and although depending on context they could in theory cause a problem, in practice we've
never seen it happen.

Skipping unknown character OXNN. This is the most likely one you'll see. It means you're
trying to display a character which isn't in the font. With most of the emails we get about this
one, the character is 0x09 - the tab character. A tab cannot be displayed simply by including
it in a line of text! For a start, with a variable width font we've no idea how wide it should be.
Please see the addTab method in the Layout Box class for a better way.

Unable to extract ICC profile from PNG. Could be because the PNG has some corruption,
or because you've got the problem described for the CS1 warning.

Unable to extract ICC profile from JPEG. Same as IM1 but for JPEGs

Can't display OxNN. This is the most likely one you'll see. It means you're trying to display a
character which isn't in the font. With most of the emails we get about this one, the
character is 0x09 - the tab character. A tab cannot be displayed simply by including it in the
text! For a start, with a variable width font we've no idea how wide it should be. Please see
the addTab method in the Layout Box class for a better way.

General text error. This could be caused by a number of reasons, but probably relating to
some issue in the font or encoding. One possible reason for this is trying to display more
than 255 different characters in a single byte font. Take a good look at the font you've picked
for the job and what you're doing with it. Either way, if you see this message, there will be
some text missing from your document when it's written.

No such object. The same as AR1.

OpenType font has restrictions on embedding. The font author has explicitly stated that the
font is not allowed to be embedded without prior permission from them. We will embed the
font anyway, but be aware that fonts are copyrighted material and that you will need to
obtain permission from the font author and publisher legally

No POST name for OXNN. For single byte OpenType fonts, each character is required to
have a PostScript name. Some (aguably) corrupt fonts are missing some, which means that
even though the glyph is in the font you've chosen, you can't access it. This message is
letting you know which ones. You could always try embedding the font using 2 bytes per
glyph to get around it.

Removing invalid annotation. You're loading a PDF with some sort of corrupt or annotation
or an invalid annotation list on one of the pages.

Removing invalid widget annotation. You're loading a PDF with some sort of corrupt or
annotation or an invalid annotation list on one of the form elements.

Widget referenced from page but not form. Unfortunately reasonably common, this is
another case where Acrobat has almost certainly deleted a form field but not it's annotation.
This warning is to let you know we're finishing the job.

No Form Field. You're importing an FDF that is trying to set a value in a form field that
doesn't exist in this document. This could indicate you're importing the wrong FDF or that
you're importing it into the wrong form, or maybe a later/earlier version of the same form.

Page40 of 42

PD5

PGL

RD1

RD2

RF1
SG1

ST1

TT1

UP1

UP5

Invalid date field. The CreationDate or ModDate stored in the "Info" dictionary is invalid. As
you would expect this prevents the end user from identifying when the document was
created or modified, but other than that there are no side effects.

Annotation is part of another PDF's form. The opposite of FE2, this occurs when in the
situation described for FE2, you try and render document B. It's saying that a widget on this
page is actually the widget for a field in another document. Since a Widget has to have a
field, we're not going to render it and it gets deleted.

Can't find "startxref". This is caused either by a truncated PDF, or by a PDF with loads of
junk at the end. A PDF should always end with the "%%EOF" tag, and just before that we
need to find the word "startxref". If we can't find it we ignore the xref table and scan the
document - exactly what Acrobat does when it says it's "Repairing” a PDF that's being read
in. This isn't a problem unless the resulting PDF isn't what you expected, which could
happen when documents with multiple versions are loaded.

Can't find "startxref" again. The same as RD1.

General xref table error. The most common version of the same error described in RD1, this
is caused by a corrupt cross-reference table. As for RD1/2, the PDF is then scanned to
recreate the table.

Can't find N/N, got NNN. An indirect object is not in the PDF where it should be. This is fairly
serious, but like AR1 and MP1, you might get lucky and find your document is usable none-
the-less. It all depends on what is missing.

Stream is NNN bytes too long. This is more common than we'd like, mainly due to the
incorrect length calculations in some inferior PDF generation routines. If NNN is small that's
probably it, if it's big you've probably got a badly corrupt PDF and should consider yourself
lucky to have got this far without an exception!

Stream is NNN bytes too short. The other side of RD5, but generally less serious. Usually
not a problem at all, just an indicator of poor PDF generation by someone.

No such object. The same as AR1.

Certificate expired or not by VeriSign. When signing a digital signature destined for the
VeriSign plugin, this warning is to let you know that your signature is most likely going to be
invalid, for one of the specified reasons.

Specified font not in form. As it says, a PDF has been loaded that contains a form field that
is to be displayed in a certain font - but that font isn't specified in the form. How Acrobat
managed to display it in the first place, we don't know, so we're substituting Helvetica. If this
is a poor choice, you can set the style by calling the set Text St yl e method on the
appropriate W dget Annot at i on

Unknown glyph. A Glyph is named in a Type 1 font program that we have no Unicode
definition for. If this occurs for only a couple of glyphs, then all that will happen is you won't
be able to use those glyphs in your text. If it happens a lot, you probably have a font with a
custom mapping, in which case you need to supply your own j ava. uti |l . Map mapping
from Unicode characters to glyph names in the constructor.

Corrupt Bookmark. A Bookmarks parent/child/next/previous marker points to something that
isn't a bookmark, or that just isn't there at all. You may lose a few bookmarks, but the
corruption will be repaired as best as we can.

Missing named action. A "named" action is missing in the document. At worst this will
prevent a hyperlink from working, as the links action is converted to a no-op

Page4l of 42

Acknowledgements

"Acrobat", "AcroForm", "Acrobat Forms", "PDF", "Portable Document Format", "Type 1 Font", "PostScript" and
"XMP" are trademarks of Adobe Corporation, Inc. "Java" is a trademark of Sun Microsystems, Inc. "Unicode" is
trademark of Unicode, Inc. "TrueType" is a trademark of Apple Computer, Inc. "PANTONE" is a trademark of the
Pantone corporation, Inc.

This document was created with the Big Faceless Report Generator, version 1.1.9

Page42 of 42

	Introduction
	Installation
	Creating New PDFs
	Defining Styles
	Colors
	Calibrated and Spot Colors
	Transparency
	Patterns

	Using Text
	Formatting Text
	Using the drawText method
	Using the LayoutBox class
	Combining text and images
	Finding the position of a phrase
	Vertical positioning
	Floating boxes

	Advanced Text
	Quotes
	Kerning
	Text Measurement

	International support
	Character Availability
	Unicode
	Bitmap Graphics
	Vector Graphics
	Graphics State
	Graphics Style
	Editing existing PDF documents
	Hyperlinks and Annotations
	Actions
	Hyperlinks
	Other Annotations

	Interactive Forms
	Interactive Forms

	Digital Signatures
	Adobe Self-Sign signatures
	VeriSign™ signatures
	Verifying existing signatures
	Additional notes on signatures

	Special Features
	Sounds
	Bookmarks
	Encryption and Access Levels
	Bar Codes
	Meta Information and Layout
	XML Metadata (Adobe XMP™)
	Output Profiles

	Appendix A: Warning Messages
	List of Examples
	1. Hello World
	2. Colors
	3. Custom Patterns
	4. OpenType fonts
	5. Formatting Text
	6. LayoutBox Text
	7. Mixing Text and Images
	8. Text on Colored backgrounds
	9. Floating Text
	10. Bitmap Images
	11. Drawing Circles
	12. Path Operations
	13. Save and Undo
	14. Editing existing documents
	15. Cloning an existing document
	16. Stamping a document
	17. Stamping under a document
	18. Page Templates
	19. Concatenating Forms
	20. LayoutBox Hyperlinks
	21. Text Hyperlinks
	22. Reading and Writing Forms
	23. Creating Forms
	24. Applying Signatures
	25. Verifying Signatures
	26. Access Control and Passwords
	27. Defining Custom Canvases
	28. Using Output Profiles

	List of Tables
	Common PDFStyle methods
	Color Patterns
	Unicode Control Characters
	Summary of Actions

	List of Notes
	Page Coordinates
	Outline or Solid?
	Standard Fonts
	Kerning & Ligatures
	Interactive Forms

	sampletext:
	samplechoice: [Monday]
	samplecheck1: Off
	samplecheck2: Off
	samplecheck3: Off
	sampleradio: Off
	samplebutton:

