
uSinG nao:
introDuCtion
to interaCtiVe
humanoiD
robotS

Written bY

PROF. KISUNG SEO
edited bY

ALDEBARAN ROBOTICS
& NT RESEARCH, INC

2

3

Robots are having a profound impact in various fields including manufacturing,
extreme jobs, and service sectors. Robots will have a wider range of application
in the near future. Humanoid robots are attracting the most attention compared
to other robots because 1) they look similar to people so they seem friendlier and
are recognized as being a better fit for helping (or replacing) humans for certain
tasks, 2) much like humans, biped walking is possible and jobs can be performed
using both hands, and 3) they mimic the most evolutionally outstanding human
form and function.

Furthermore, humanoid robots are getting a lot of attention from educators
and researchers because they are surrounded by challenging issues including
difficulties in walking and general motion control, effectiveness issue with
processing the recognition sensors, and implementation of intelligence. It has
been very tough because there aren’t a lot of commercialized robots we can use
to develop new controls and intelligence algorithms and for fully utilizing the
advanced features of these humanoid robots in actual educational and research
sites. Fortunately, more humanoid robots are being released, and out of all of
them, NAO from Aldebaran Robotics is the world’s most widely known humanoid
robot being used for education and research. In August of 2007, it was designated
as the official platform for RoboCup (Robot Soccer World Cup) instead of Sony’s
Aibo (puppy robot), and has been adopted in Suzhou, China starting from the 2008
competition.

Humanoid NAO consists of 25 joints that make walking and general motion control
possible. Diverse interactions are possible through wireless/cable network enabled
communication, cameras, infrared sensors, microphone, speakers and LEDs.
The software structure is based on open source embedded Linux and supports
programming languages like C, C++, URBI, Python, and. Net Framework. It also
provides a graphic-based programming called Choregraphe.

This book will try to focus on using Aldebaran’s humanoid NAO robot to explain the
environment and tools, programming techniques, and basic theory and applications
for educational and research purposes of vocational high schools, universities, and
the general public.

This book is largely divided into two parts: Chapters 1-3 for beginners and
Chapters 4-6 for advanced users. Chapters 1-3 introduce Choregraphe and
Python necessary for basic NAO robot usage. Chapters 4-6 handle information
for professional use. I would like to advise anyone just learning about the NAO
robot and people who are unfamiliar with C and Python to become familiar with
the information in Chapters 1-3. Chapters 2 and 4-6 are recommended for anyone
with previous experience in robot programming or anyone who wants to perform
specialized algorithms and control commands.

Words From the Author

4

Chapter 1 introduces the NAO robot and the Monitor program that can be used
to verify NAO’s internal memory and image processing. It will also explain how to
do the initial setup for the system. Because this chapter discusses NAO’s special
features, it would be good for readers who are not quite familiar with NAO.

Chapter 2 will teach you how to use Choregraphe, a graphic-based programming
tool, to operate NAO. Choregraphe uses a program module called Diagram to
explain how to program and how to set NAO’s movements in Timeline. Additionally,
it will provide a description of how to use box libraries and FTP in Choregraphe.

Chapter 3 will have a short introduction to Choregraphe scripts and Python for
NAOqi. There is a basic description of Python syntax and a discussion about
creating and editing Choregraphe script boxes. This would be a good chapter if you
are already familiar with Python.

Chapter 4 explains the NAOqi framework which forms the foundation of the NAO
robot and the DCM used for controlling all the devices. Special characteristics
including the NAOqi framework structure, file structure, and Broker as well as the
NAOqi framework are used to control NAO. It also explores how to load modules
into NAO using Linux, C++, and cross-compiling as well as what to do when several
commands are received in Time Command. There will also be an introduction to
the structures of DCM controlled devices and how to synchronize using DCM’s
synchronization method.

Robot kinematics in Chapter 5 explains NAO’s joint structure and provides
information for each joint. The Denavit-Hartenberg (DH) method is used to explain
the calculation for forward kinematics. In addition, Python will be used to create
an actual forward kinematics calculation program. This chapter will also describe
inverse kinematics calculations and use Python to implement the inverse kinematics
calculation program for NAO’s right arm. You will need quite a bit of mathematical
and robotics knowledge to understand the contents in Chapter 5.

Comprehensive Exercises in Chapter 6 use the information thus far to look at
different methods and examples for implementing NAO’s applications. Advanced
Choregraphe features and expansion methods will be used here and you will be
able to practice using Timeline Editor. In addition, landmark recognition will be
used to create a path finding program, and the multiplication example will help
you learn some of the techniques for Python and NAOqi API. Last, but not least,
image recognition will be used to classify objects and inverse kinematics and
NAOqi usage will be explained.

It was considerably difficult to write this book because there was a disadvantage
of dealing with such a specific model of humanoid robot.

5

Ki-sung Suh

There wasn’t much material about it, and the ones that were available were quite
disorganized. I was also conflicted about how to handle the variety of readership
because of the content and general difficulty of the subject matter. I am sincerely
hoping that this book will serve as a good introduction to humanoid robots.

I would like to express my sincere gratitude to the people at NT Research Inc. who
gave me both material and emotional support.

I would especially like to thank Jae-young Jang, Byung-yong Hyun, Su-hwan
Hyun, Oh-sung Kwon, Jae-min Lee, and Young-kyun Kim in Intelligent Systems
Laboratory for conducting the series of experiments with the NAO robot to help me
verify the information in this book. Although every effort has been put into gathering
information for this book, I am sure that there is still room for improvement, and I
acknowledge that this is wholly due to the fact that I still have a lot to learn about
this vast and amazing field.

6

hoW to use
thiS CurriCulum

You Are AlloWed to reproduce
the content oF this book And to shAre
it With Your clAssroom onlY.

Aldebaran Robotics does not warrant the accuracy of the provided content
which shall be used at your own risk and under your control. Aldebaran Robotics
disclaims all liability related to the use as well as the content. All rights not
specifically granted herein are reserved to Aldebaran Robotics. Aldebaran
Robotics and/or its licensor shall retain all rights, title and interest and
ownership in and to the book and its content.

This curriculum has been done with the 1.8.16 version of Choregraphe,
our programming software. However, most of the features are compatible
with newer versions. The screenshot of the software included in this curriculum
may be different depending of the version of Choregraphe you have.

7

table
of ContentS(

8
10
17
18
22

26
28
33
35
39
46

92
94
95
98

105
109
112
120
124

133

134
136
138
146
153

163
164
168
172

173
181

182
184
185
186
193
205

216
218
235
246

251

261

 > 1 - Introduction
 NAO is…
 Preparation
 Connecting NAO
 Monitor (Former name : Telepathe)

 > 2 - Choregraphe
 Introduction and Interface
 Choregraphe-NAO connection
 Box
 Event and time Centered Programming
 Box Library

 > 3 - Python
 Before Getting Started
 Overview
 Data Types and Operators
 Control statements
 Functions
 Class
 Module
 Comprehensive Practice Through
 Choregraphe Script Modification
 References

 > 4 - NAOqi &DCM
 NAOqi Overview
 Structural Overview
 Using NAOqi
 Cross Compiling fo Loading
 Modules (Using C++, Linux)
 DCM Introduction
 Upper Level Architecture
 Low Level Architecture
 Preferences Files
 and Sub Preference Files
 DCM Bounds Methods
 DCM Synchronization Methods

 > 5 - NAO Kinematics
 Overview
 Transformation Matrix
 NAO Structure
 Kinematics
 Inverse Kinematics

 > 6 - Comprehensive examples
 Choregraphe Application
 Motion Control – Timeline Editor
 Getting Directions Using
 Landmarks – Using Choregraphe
 Memorizing the Multiplication Table
 – Python and NAOqi Application
 Combining Recognition and Movement
 – Using Images for Object recognition
 and Grabbing Motion

 > WorDS from the author

 > hoW to uSe thiS CurriCulum

8

introDuCtion1
Chapter 1 introduces the NAO robot and the Monitor
program that can be used to verify NAO’s internal
memory It will also explain how to do the initial
setup for the system.

Because this chapter discusses NAO’s special
features, it would be good for readers who are not
yet familiar with nao.

LEARNING

9

NAO is…

1.1.1 Common features
1.1.2 Configuration
1.1.3 Joint Configuration
1.1.4 Vision System
1.1.5 Audio
1.1.6 Software

Preparation

1.2.1 Package Configuration
1.2.2 Requirements
1.2.3 Software installation

Connecting NAO

1.3.1 Wired connection
 using Ethernet
1.3.2 Wireless connection
 using Wi-Fi
1.3.3 Using web service
 for default settings
1.3.4 File Transfer using FTP

Monitor (Former name : Telepathe)

10

11
12
14
15
16
16

17

17
17
17

18

18

18

20

21

22

1.1

1.2

1.3

1.4

CONTENT

10

ChoreGraPhe2
Chapter 2 will teach you how to use Choregraphe,
a graphic-based programming tool, to operate NAO.
Choregraphe uses a program module called Diagram
to explain how to program and how to set NAO’s
movements in Timeline.

Additionally, it will provide a description of how to
use box libraries and FTP in Choregraphe.

LEARNING

11

CONTENT

Introduction and Interface

2.1.1 Menu
2.1.2 Box Library
2.1.3 Diagramming Space
2.1.4 3D NAO
2.1.5 Predefined Position Library
2.1.6 Video Monitor

Choregraphe-NAO connection

2.2.1 Connection Settings
2.2.2 Enslaving
2.2.3 File Transfer

Box

2.3.1 Structure
2.3.2 Box generation

Event and time Centered Programming

2.4.1 Event-Based Programming
2.4.2 Time-based Programming

Box Library

2.5.1 LED Library
2.5.2 Sensors Library
2.5.3 Logic Library
2.5.4 Tool Library
2.5.5 Math Library
2.5.6 Motion Library
2.5.7 Walk Library
2.5.8 Audio Library
2.5.9 Video Library
2.5.10 Tracker Library
2.5.11 Communication Library

2.1

2.2

2.3

2.4

2.5

28

29
30
30
31
32
32

33

33
34
34

35

35
36

39

39
42

46

46
49
53
60
63
65
72
77
83
88
89

12

PYthon3
Chapter 3 will have a short introduction
to Choregraphe scripts and Python for NAOqi.
There is a basic description of Python syntax
and a discussion about creating and editing
Choregraphe script boxes.

this would be a good chapter if you are already
familiar with Python

LEARNING

13

CONTENT

3.4

3.5

3.9

Before Getting Started

Overview

3.2.1 Determining the Dynamic
 Data Type
3.2.2. Platform-Independent
 Language
3.2.3 Simple and Easy Syntax
3.2.4 Built-in Data Structures
 like Strings, Lists, Tuple,
 and Dictionnary
3.2.5 Automatic Memory
 Management
3.2.6 Diverse Libraries
3.2.7 Scalability

Data Types and Operators

3.3.1 Variable Name
3.3.2 Operator, Numeric
 and String Representation
3.3.3 Lists, Tuple, Dictionary

Control statements

3.4.1 The “if”Statement
3.4.2 The “while” Statement
3.4.3 The “for” Statement
3.4.4 Range Method

Functions

3.5.1 Definition
3.5.2 Return Value
3.5.3 Parameter
3.5.4 Pass

Class

3.6.1 Declaration
3.6.2 Relationship between Class
 and Instance
3.6.3 Constructor and destructor
3.6.4 Static Method
3.6.5 Operator Overloading
3.6.6 Inheritance

Module

3.7.1 Module Usage
3.7.2 Module Creation

Comprehensive Practice Through
Choregraphe Script Modification

3.8.1 Random Eyes Box Script
3.8.2 Using Python to Create
 New Choregraphe Boxes

References

3.1 3.6

3.2

3.7

3.3

3.8

94

95

95

96

96
96

97

97
97

98

98
98

101

105

105
106
107
107

109

109
110
110
111

112

112
113

114
115
115
117

120

120
121

124

124
126

133

14

naoqi
& DCm4

Chapter 4 explains the NAOqi framework
which forms the foundation of the NAO robot
and the DCM used for controlling all the devices.
Special characteristics including the NAOqi
framework structure, fi le structure, and Broker
as well as the NAOqi framework are used
to control NAO.

It also explores how to load modules into NAO
using Linux, C++, and cross-compiling as well
as what to do when several commands
are received in Time Command. There will
also be an introduction to the structures of DCM
controlled devices and how to synchronize using
DCM’s synchronization method.

LEARNING

15

CONTENT

NAOqi Overview

4.1.1 About NAOqi
4.1.2 NAOqi Term Definitions

Structural Overview

4.2.1 File Structure
4.2.2 Broker

Using NAOqi

4.3.1 Setting the Environment
 or Using Python
4.3.2 Project Setup for NAOqi C++
 Programming
4.3.3 Simple Example Using NAOqi
4.3.4 NAOqi Option
4.3.5 Remote Option
4.3.6 NAOqi in NAO

Cross Compiling fo Loading
Modules (Using C++, Linux)

4.4.1 Preparing the Cross-compile
 Tools
4.4.2 Cross Compiling Process
 Using CMake and Make
4.4.3 NAO Robot Setup
4.4.4 Module Execution

DCM Introduction

Upper Level Architecture

4.6.1 Structural Overview
4.6.2 Time command
4.6.3 Time command
 linear interpolation

Low Level Architecture

4.7.1 Device Overview
4.7.2 Devices and Definitions
 of the Auxiliary Devices
4.7.3 List of Communication Bus
4.7.4 Device Type and List
4.7.5 Auxiliary device Type and List

Preferences Files
and Sub Preference Files

4.8.1 Introduction
4.8.2 Structural Overview

DCM Bounds Methods

4.9.1 getTime
4.9.2 Set
4.9.3 createAlias
4.9.4 setAlias
4.9.5 Special

DCM Synchronization Methods

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.10

4.8

4.9

168

168
168

170
170
171

172

172
172

173

173
173
177
178
180

181

136

136
137

138

140
142

146

146

149

150
151
152
152

153

153

154

159
162

163

164

164
164
165

16

nao
KinematiCS5

Robot kinematics in Chapter 5 explains
NAO’s joint structure and provides information
for each joint. The Denavit-Hartenberg (DH)
method is used to explain the calculation
for forward kinematics. In addition, Python
will be used to create an actual forward
kinematics calculation program.

This chapter will also describe inverse kinematics
calculations and use Python to implement
the inverse kinematics calculation program
for NAO’s right arm.

You will need quite a bit of mathematical
and robotics knowledge to understand the contents
in Chapter 5

LEARNING PREREQUISITE

17

CONTENT

Overview

Transformation Matrix

NAO Structure

5.3.1 Link Information
5.3.2 Joint Information
5.3.3 Head Joint
5.3.4 Arm Joints
5.3.5 Pelvic Joints
5.3.6 Leg Joints

Kinematics

5.4.1 Overview
5.4.2 Calculating the Forward
 Kinematics of the Right Hand
5.4.3 Forward Kinematics
 Calculation Using Python
 and NAOqi

Inverse Kinematics

5.5.1 Overview
5.5.2 Using Python to calculate
 the forward kinematics
 of the right arm
5.5.3 Using Inverse Kinematics
 to Control Movements

184

185

186

186
188
190
190
187
187

193

193
196

201

205

205
209

210

5.1

5.4

5.2

5.5

5.3

18

ComPrehenSiVe
eXamPleS6

Comprehensive Exercises in Chapter 6 use the
information thus far to look at different methods
and examples for implementing NAO’s applications.
Advanced Choregraphe features and expansion
methods will be used here and you will be able
to practice using Timeline Editor.

In addition, landmark recognition will be used
to create a path-fi nding program, and the
multiplication example will help you learn some
of the techniques for Python and NAOqi API.
Last, but not least, image recognition will be used
to classify objects and inverse kinematics
and NAOqi usage will be explained.

LEARNING

19

CONTENT

Choregraphe Application

6.1.1 Program Configuration
6.1.2 NAOqi API
6.1.3 Keyframe
6.1.4 Timeline Editor

Motion Control – Timeline Editor

6.2.1 Saving NAO’s Actual Movements
6.2.2 Adjusting NAO’s movements
6.2.3 Controlling Joint Movements

Getting Directions Using
Landmarks – Using Choregraphe

6.3.1 Studying and Recognizing
 Landmarks
6.3.2 Programming

Memorizing the Multiplication
Table – Python and NAOqi
Application

6.4.1 Singular Number
 (Multiplicand) Calculator
6.4.2 Adjusting the Multiply Box
6.4.3 “Say”Box Expansion
6.4.4 Box Placement
 and connection

Combining Recognition and
Movement – Using Images for Object
recognition and Grabbing Motion

6.5.1 Object Recognition
6.5.2 Grabbing the Object Using
 Inverse Kinematics Analysis
6.5.3 Grabbing the object using
 inverse kinematics analysis
6.5.4 Combining recognition
 and Grabbing Motion 5

218

218
219
226
231

235

235
238
242

246

247

248

251

252

254
255
258

261

262
263

264

267

6.1

6.2

6.3

6.4

6.5

20

ki-sunG suh

1986 Yonsei University School of Electrical
 Engineering, BS.

1988 Yonsei University School of Electrical
 Engineering, Master of Engineering.

1993 Yonsei University School of Electrical
 Engineering, Ph.D.

1993-1998 Seokeyeong University, Department
 of Industrial Engineering, Department
 of Electronic Engineering, Assistant
 Professor

1999-2003 Michigan State University, Genetic
 Algorithms Research and Applications
 Group, Research Associate.

2002-2003 Michigan State University, Electrical
 & Computer Engineering, Visiting
 Assistant Professor.

2004-Present Seokeyeong University,
 Department of Electronic Engineering,
 Associate Professor

Areas of interest include Intelligent Robot, Evolutionary
Computation, Genetic Programming, Evolutionary Neural
Networks, and Evolutionary Design.

About
the author

