
SPC
Version 0.9.1 b1

Generated by Doxygen 1.6.2

Mon Oct 17 09:45:43 2011

CONTENTS i

Contents

1 SPC Programmer’s Guide 1

2 Introduction 2

3 The SPC Language 2

3.1 Lexical Rules . 3

3.1.1 Comments . 3

3.1.2 Whitespace . 3

3.1.3 Numerical Constants . 4

3.1.4 String Constants . 4

3.1.5 Character Constants . 4

3.1.6 System Constants . 4

3.1.7 Identifiers and Keywords . 5

3.2 Program Structure . 8

3.2.1 Code Order . 9

3.2.2 Tasks . 10

3.2.3 Functions . 10

3.2.4 Variables . 14

3.2.5 Structures . 15

3.2.6 Arrays . 16

3.3 Statements . 17

3.3.1 Variable Declaration . 17

3.3.2 Assignment . 18

3.3.3 Control Structures . 18

3.3.4 The asm statement . 24

3.3.5 Other SPC Statements . 24

3.4 Expressions . 26

3.4.1 Conditions . 28

3.5 The Preprocessor . 29

3.5.1 #include . 29

Generated on Mon Oct 17 09:45:43 2011 for SPC by Doxygen

CONTENTS ii

3.5.2 #define . 30

3.5.3 ## (Concatenation) . 30

3.5.4 Conditional Compilation . 30

4 SuperPro pre-defined system constants 31

4.1 ADChannel0/1/2/3 . 31

4.2 DigitalIn . 32

4.3 DigitalOut . 32

4.4 DigitalControl . 32

4.5 StrobeControl . 32

4.6 Timer0/1/2/3 . 34

4.7 SerialInCount . 34

4.8 SerialInByte . 35

4.9 SerialOutCount . 35

4.10 SerialOutByte . 35

4.11 DAC0Mode/DAC1Mode . 35

4.12 DAC0Frequency/DAC1Frequency 36

4.13 DAC0Voltage/DAC1Voltage . 37

4.14 LEDControl . 37

4.15 SystemClock . 37

5 Module Documentation 37

5.1 Miscellaneous SPC constants . 37

5.1.1 Detailed Description . 38

5.1.2 Define Documentation . 38

5.2 SuperPro analog output mode constants 38

5.2.1 Detailed Description . 39

5.2.2 Define Documentation . 39

5.3 SuperPro LED control constants . 40

5.3.1 Detailed Description . 40

5.3.2 Define Documentation . 40

5.4 SuperPro digital pin constants . 40

Generated on Mon Oct 17 09:45:43 2011 for SPC by Doxygen

CONTENTS iii

5.4.1 Detailed Description . 41

5.4.2 Define Documentation . 41

5.5 SuperPro Strobe control constants 42

5.5.1 Detailed Description . 42

5.5.2 Define Documentation . 42

5.6 Data type limits . 43

5.6.1 Detailed Description . 43

5.6.2 Define Documentation . 43

5.7 Program slot constants . 44

5.7.1 Detailed Description . 45

5.7.2 Define Documentation . 45

5.8 Log status constants . 45

5.8.1 Detailed Description . 46

5.8.2 Define Documentation . 46

5.9 Time constants . 46

5.9.1 Detailed Description . 48

5.9.2 Define Documentation . 48

5.10 Tone constants . 52

5.10.1 Detailed Description . 54

5.10.2 Define Documentation . 54

5.11 SPC API . 59

5.11.1 Detailed Description . 61

5.11.2 Function Documentation . 61

5.12 ctype API . 68

5.12.1 Detailed Description . 69

5.12.2 Function Documentation . 69

6 File Documentation 73

6.1 SPCAPIDocs.h File Reference . 73

6.1.1 Detailed Description . 74

6.2 SPCDefs.h File Reference . 74

Generated on Mon Oct 17 09:45:43 2011 for SPC by Doxygen

1 SPC Programmer’s Guide 1

6.2.1 Detailed Description . 80

6.2.2 Define Documentation . 81

6.2.3 Function Documentation . 95

6.3 spmem.h File Reference . 106

6.3.1 Detailed Description . 107

6.3.2 Define Documentation . 107

1 SPC Programmer’s Guide

October 10, 2011

by John Hansen

• Introduction

• The SPC Language

2 Introduction

SPC stands for SuperPro C.

It is a simple language for programming the HiTechnic SuperPro prototyping sensor
board. The SuperPro has a bytecode interpreter which can be used to execute programs.
The SPC compiler translates a source program into SuperPro bytecodes, which can then
be executed on the target itself. Although the preprocessor and control structures of
SPC are very similar to C, SPC is not a general-purpose programming language - there
are many restrictions that stem from limitations of the SuperPro bytecode interpreter.

Logically, SPC is defined as two separate pieces. The SPC language describes the syn-
tax to be used in writing programs. The SPC Application Programming Interface (API)
describes the system functions, constants, and macros that can be used by programs.
This API is defined in a special file known as a "header file" which is, by default,
automatically included when compiling a program.

This document describes both the SPC language and the SPC API. In short, it provides
the information needed to write SPC programs. Since there are different interfaces for
SPC, this document does not describe how to use any specific SPC implementation

Generated on Mon Oct 17 09:45:43 2011 for SPC by Doxygen

3 The SPC Language 2

(such as the command-line compiler or Bricx Command Center). Refer to the docu-
mentation provided with the SPC tool, such as the SPC User Manual, for information
specific to that implementation.

For up-to-date information and documentation for SPC, visit the SPC website at
http://bricxcc.sourceforge.net/spc/.

3 The SPC Language

This section describes the SPC language.

This includes the lexical rules used by the compiler, the structure of programs, state-
ments and expressions, and the operation of the preprocessor.

SPC is a case-sensitive language, just like C and C++, which means the identifier "xYz"
is not the same identifier as "Xyz". Similarly, the "if" statement begins with the key-
word "if" but "iF", "If", or "IF" are all just valid identifiers - not keywords.

• Lexical Rules

• Program Structure

• Statements

• Expressions

• The Preprocessor

3.1 Lexical Rules

The lexical rules describe how SPC breaks a source file into individual tokens.

This includes the way comments are written, the handling of whitespace, and valid
characters for identifiers.

• Comments

• Whitespace

• Numerical Constants

• String Constants

• Character Constants

• System Constants

• Identifiers and Keywords

Generated on Mon Oct 17 09:45:43 2011 for SPC by Doxygen

http://bricxcc.sourceforge.net/spc/.

3.1 Lexical Rules 3

3.1.1 Comments

Two forms of comments are supported in SPC.

The first are traditional C comments. They begin with ’/∗’ and end with ’∗ /’. These
comments are allowed to span multiple lines, but they cannot be nested.

/* this is a comment */

/* this is a two
line comment */

/* another comment...
/* trying to nest...

ending the inner comment...*/
this text is no longer a comment! */

The second form of comments supported in SPC begins with ’//’ and continues to the
end of the current line. These are sometimes known as C++ style comments.

// a single line comment

As you might guess, the compiler ignores comments. Their only purpose is to allow
the programmer to document the source code.

3.1.2 Whitespace

Whitespace consists of all spaces, tabs, and newlines.

It is used to separate tokens and to make a program more readable. As long as the to-
kens are distinguishable, adding or subtracting whitespace has no effect on the meaning
of a program. For example, the following lines of code both have the same meaning:

x=2;
x = 2 ;

Some of the C++ operators consist of multiple characters. In order to preserve these
tokens, whitespace cannot appear within them. In the example below, the first line uses
a right shift operator (’>>’), but in the second line the added space causes the ’>’
symbols to be interpreted as two separate tokens and thus results in a compiler error.

x = 1 >> 4; // set x to 1 right shifted by 4 bits
x = 1 > > 4; // error

3.1.3 Numerical Constants

Numerical constants may be written in either decimal or hexadecimal form.

Decimal constants consist of one or more decimal digits. Decimal constants may op-
tionally include a decimal point along with one or more decimal digits following the
decimal point. Hexadecimal constants start with 0x or 0X followed by one or more
hexadecimal digits.

Generated on Mon Oct 17 09:45:43 2011 for SPC by Doxygen

3.1 Lexical Rules 4

x = 10; // set x to 10
x = 0x10; // set x to 16 (10 hex)
f = 10.5; // set f to 10.5

3.1.4 String Constants

String constants in SPC, just as in C, are delimited with double quote characters.

String constants can only be used in a few API functions that require a const char ∗
input parameter.

puts("testing\n");
printf("testing %d\n", value);

3.1.5 Character Constants

Character constants in SPC are delimited with single quote characters and may contain
a single ASCII character.

The value of a character constant is the numeric ASCII value of the character.

char ch = ’a’; // ch == 97

3.1.6 System Constants

In SPC you can define special system memory address constants that are treated like a
variable with an absolute memory address.

A system address is simply a numeric constant preceded by the ’@’ symbol.

int volt = @0x00; // read the voltage from analog input A0.
@0x0C = 1000; // set countdown timer 0 to 1000.

3.1.7 Identifiers and Keywords

Identifiers are used for variable, task, function, and subroutine names.

The first character of an identifier must be an upper or lower case letter or the under-
score (’_’). Remaining characters may be letters, numbers, and underscores.

A number of tokens are reserved for use in the SPC language itself. These are called
keywords and may not be used as identifiers. A complete list of keywords appears
below:

• The asm statement

• bool

Generated on Mon Oct 17 09:45:43 2011 for SPC by Doxygen

3.1 Lexical Rules 5

• The break statement

• The case label

• char

• const

• The continue statement

• The default label

• The do statement

• The if-else statement

• enum

• The false condition

• The for statement

• The goto statement

• The if statement

• The inline keyword

• int

• long

• The repeat statement

• The return statement

• The start statement

• static

• Structures

• The sub keyword

• The switch statement

• Tasks

• The true condition

• typedef

• The until statement

• The void keyword

• The while statement

Generated on Mon Oct 17 09:45:43 2011 for SPC by Doxygen

3.1 Lexical Rules 6

3.1.7.1 const

The const keyword is used to alter a variable declaration so that the variable cannot
have its value changed after it is initialized.

The initialization must occur at the point of the variable declaration.

const int myConst = 23; // declare and initialize constant integer
task main() {

int x = myConst; // this works fine
myConst++; // compiler error - you cannot modify a constant’s value

}

3.1.7.2 enum

The enum keyword is used to create an enumerated type named name.

The syntax is show below.

enum [name] {name-list} var-list;

The enumerated type consists of the elements in name-list. The var-list argument is
optional, and can be used to create instances of the type along with the declaration. For
example, the following code creates an enumerated type for colors:

enum ColorT {red, orange, yellow, green, blue, indigo, violet};

In the above example, the effect of the enumeration is to introduce several new con-
stants named red, orange, yellow, etc. By default, these constants are assigned consec-
utive integer values starting at zero. You can change the values of those constants, as
shown by the next example:

enum ColorT { red = 10, blue = 15, green };

In the above example, green has a value of 16. Once you have defined an enumerated
type you can use it to declare variables just like you use any native type. Here are a few
examples of using the enum keyword:

// values start from 0 and increment upward by 1
enum { ONE, TWO, THREE };
// optional equal sign with constant expression for the value
enum { SMALL=10, MEDIUM=100, LARGE=1000 };
// names without equal sign increment by one from last name’s value
enum { FRED=1, WILMA, BARNEY, BETTY };
// optional named type (like a typedef)
enum TheSeasons { SPRING, SUMMER, FALL, WINTER };
// optional variable at end
enum Days {

saturday, // saturday = 0 by default
sunday = 0x0, // sunday = 0 as well
monday, // monday = 1
tuesday, // tuesday = 2

Generated on Mon Oct 17 09:45:43 2011 for SPC by Doxygen

3.1 Lexical Rules 7

wednesday, // etc.
thursday,
friday

} today; // Variable today has type Days

Days tomorrow;

task main()
{

TheSeasons test = FALL;
today = monday;
tomorrow = today+1;
printf("%d\n", THREE);
printf("%d\n", MEDIUM);
printf("%d\n", FRED);
printf("%d\n", SPRING);
printf("%d\n", friday);
printf("%d\n", today);
printf("%d\n", test);
printf("%d\n", tomorrow);
Wait(SEC_5);

}

3.1.7.3 static

The static keyword is used to alter a variable declaration so that the variable is allocated
statically - the lifetime of the variable extends across the entire run of the program -
while having the same scope as variables declared without the static keyword.

Note that the initialization of automatic and static variables is quite different. Au-
tomatic variables (local variables are automatic by default, unless you explicitly use
static keyword) are initialized during the run-time, so the initialization will be executed
whenever it is encountered in the program. Static (and global) variables are initialized
during the compile-time, so the initial values will simply be embeded in the executable
file itself.

void func() {
static int x = 0; // x is initialized only once across three calls of func()
NumOut(0, LCD_LINE1, x); // outputs the value of x
x = x + 1;

}

task main() {
func(); // prints 0
func(); // prints 1
func(); // prints 2

}

3.1.7.4 typedef

A typedef declaration introduces a name that, within its scope, becomes a synonym for
the type given by the type-declaration portion of the declaration.

Generated on Mon Oct 17 09:45:43 2011 for SPC by Doxygen

3.2 Program Structure 8

typedef type-declaration synonym;

You can use typedef declarations to construct shorter or more meaningful names for
types already defined by the language or for types that you have declared. Typedef
names allow you to encapsulate implementation details that may change.

A typedef declaration does not introduce a new type - it introduces a new name for an
existing type. Here are a few examples of how to use the typedef keyword:

typedef char FlagType;
const FlagType x;
typedef char CHAR; // Character type.
CHAR ch;

3.2 Program Structure

An SPC program is composed of code blocks and variables.

There are two distinct types of code blocks: tasks and functions. Each type of code
block has its own unique features, but they share a common structure.

• Code Order

• Tasks

• Functions

• Variables

• Structures

• Arrays

3.2.1 Code Order

Code order has two aspects: the order in which the code appears in the source code file
and the order in which it is executed at runtime.

The first will be referred to as the lexical order and the second as the runtime order.

The lexical order is important to the SPC compiler, but not to the SuperPro brick. This
means that the order in which you write your task and function definitions has no effect
on the runtime order. The rules controlling runtime order are:

1. There must be a task called main and this task will always run first.

2. The time at which any other task will run is determined by the placement of API
functions and keywords that start other tasks.

Generated on Mon Oct 17 09:45:43 2011 for SPC by Doxygen

3.2 Program Structure 9

3. A function will run whenever it is called from another block of code.

This last rule may seem trivial, but it has important consequences when multiple tasks
are running. If a task calls a function that is already in the midst of running because it
was called first by another task, unpredictable behavior and results may ensue. Tasks
can share functions by treating them as shared resources and using code to prevent one
task from calling the function while another task is using it.

The rules for lexical ordering are:

1. Any identifier naming a task or function must be known to the compiler before
it is used in a code block.

2. A task or function definition makes its naming identifier known to the compiler.

3. A task or function declaration also makes a naming identifier known to the com-
piler.

4. Once a task or function is defined it cannot be redefined or declared.

5. Once a task or function is declared it cannot be redeclared.

Sometimes you will run into situations where is impossible or inconvenient to order the
task and function definitions so the compiler knows every task or function name before
it sees that name used in a code block. You can work around this by inserting task or
function declarations of the form

task name();

return_type name(argument_list);

before the code block where the first usage occurs. The argument_listmust match
the list of formal arguments given later in the function’s actual definition.

3.2.2 Tasks

Since the SuperPro supports multi-threading, a task in SPC directly corresponds to a
SuperPro thread or process.

Tasks are defined using the task keyword with the syntax shown in the code sample
below.

task name()
{

// the task’s code is placed here
}

The name of the task may be any legal identifier. A program must always have at least
one task - named "main" - which is started whenever the program is run. The body of
a task consists of a list of statements.

Generated on Mon Oct 17 09:45:43 2011 for SPC by Doxygen

3.2 Program Structure 10

You can start tasks with the start statement, which is discussed below.

The StopAllTasks API function stops all currently running tasks. You can also stop all
tasks using the Stop function. A task can stop itself via the ExitTo function. Finally, a
task will stop itself simply by reaching the end of its body.

3.2.3 Functions

It is often helpful to group a set of statements together into a single function, which
your code can then call as needed.

SPC supports functions with arguments and return values. Functions are defined using
the syntax below.

[inline] return_type name(argument_list)
{

// body of the function
}

The return type is the type of data returned. In the C programming language, functions
must specify the type of data they return. Functions that do not return data simply
return void.

Additional details about the keywords inline, and void can be found below.

• The inline keyword

• The void keyword

The argument list of a function may be empty, or may contain one or more argument
definitions. An argument is defined by a type followed by a name. Commas separate
multiple arguments. All values are represented as bool, char, int, long, struct types, or
arrays of any type.

SPC supports specifying a default value for function arguments that are not struct or
array types. Simply add an equal sign followed by the default value. Specifying a
default value makes the argument optional when you call the function. All optional
arguments must be at the end of the argument list.

int foo(int x, int y = 20)
{

return x*y;
}

task main()
{

printf("%d\n", foo(10)); outputs 200
printf("%d\n", foo(10, 5)); outputs 50
Wait(SEC_10); // wait 10 seconds

}

Generated on Mon Oct 17 09:45:43 2011 for SPC by Doxygen

3.2 Program Structure 11

SPC also supports passing arguments by value, by constant value, by reference, and
by constant reference. These four modes for passing parameters into a function are
discussed below.

When arguments are passed by value from the calling function or task to the called
function the compiler must allocate a temporary variable to hold the argument. There
are no restrictions on the type of value that may be used. However, since the function
is working with a copy of the actual argument, the caller will not see any changes the
called function makes to the value. In the example below, the function foo attempts to
set the value of its argument to 2. This is perfectly legal, but since foo is working on a
copy of the original argument, the variable y from the main task remains unchanged.

void foo(int x)
{

x = 2;
}

task main()
{

int y = 1; // y is now equal to 1
foo(y); // y is still equal to 1!

}

The second type of argument, const arg_type, is also passed by value. If the function
is an inline function then arguments of this kind can sometimes be treated by the com-
piler as true constant values and can be evaluated at compile-time. If the function is
not inline then the compiler treats the argument as if it were a constant reference, al-
lowing you to pass either constants or variables. Being able to fully evaluate function
arguments at compile-time can be important since some SPC API functions only work
with true constant arguments.

void foo(const int x)
{

x = 1; // error - cannot modify argument
Wait(SEC_1);

}

task main()
{

int x = 5;
foo(5); // ok
foo(4*5); // expression is still constant
foo(x); // x is not a constant but is okay

}

The third type, arg_type &, passes arguments by reference rather than by value. This
allows the called function to modify the value and have those changes be available in
the calling function after the called function returns. However, only variables may be
used when calling a function using arg_type & arguments:

void foo(int &x)
{

x = 2;
}

task main()

Generated on Mon Oct 17 09:45:43 2011 for SPC by Doxygen

3.2 Program Structure 12

{
int y = 1; // y is equal to 1

foo(y); // y is now equal to 2
foo(2); // error - only variables allowed

}

The fourth type, const arg_type &, is interesting. It is also passed by reference, but
with the restriction that the called function is not allowed to modify the value. Because
of this restriction, the compiler is able to pass anything, not just variables, to functions
using this type of argument. Currently, passing an argument by reference in SPC is
not as optimal as it is in C. A copy of the argument is still made but the compiler will
enforce the restriction that the value may not be modified inside the called function.

Functions must be invoked with the correct number and type of arguments. The code
example below shows several different legal and illegal calls to function foo.

void foo(int bar, const int baz)
{

// do something here...
}

task main()
{

int x; // declare variable x
foo(1, 2); // ok
foo(x, 2); // ok
foo(2); // error - wrong number of arguments!

}

3.2.3.1 The inline keyword

You can optionally mark SPC functions as inline functions.

This means that each call to the function will create another copy of the function’s
code. Unless used judiciously, inline functions can lead to excessive code size.

If a function is not marked as inline then an actual SuperPro subroutine is created and
the call to the function in SPC code will result in a subroutine call to the SuperPro
subroutine. The total number of non-inline functions (aka subroutines) and tasks must
not exceed 256.

The code example below shows how you can use the inline keyword to make a function
emit its code at the point where it is called rather than requiring a subroutine call.

inline void foo(int value)
{

Wait(value);
}

task main()
{

foo(MS_100);

Generated on Mon Oct 17 09:45:43 2011 for SPC by Doxygen

3.2 Program Structure 13

foo(MS_10);
foo(SEC_1);
foo(MS_50);

}

In this case task main will contain 4 Wait calls rather than 4 calls to the foo subroutine
since it was expanded inline.

3.2.3.2 The void keyword

The void keyword allows you to define a function that returns no data.

Functions that do not return any value are sometimes referred to as procedures or sub-
routines. The sub keyword is an alias for void. Both of these keywords can only be used
when declaring or defining a function. Unlike C you cannot use void when declaring a
variable type.

In NQC the void keyword was used to declare inline functions that could have argu-
ments but could not return a value. In SPC void functions are not automatically inline
as they were in NQC. To make a function inline you have to use the inline keyword
prior to the function return type as described in the Functions section above.

• The sub keyword

3.2.3.2.1 The sub keyword The sub keyword allows you to define a function that
returns no data.

Functions that do not return any value are sometimes referred to as procedures or sub-
routines. The sub keyword is an alias for void. Both of these keywords can only be
used when declaring or defining a function.

In NQC you used this keyword to define a true subroutine which could have no argu-
ments and return no value. For the sake of C compatibility it is preferrable to use the
void keyword if you want to define a function that does not return a value.

3.2.4 Variables

All variables in SPC are defined using one of the types listed below:

• bool

• char

• int

• long

Generated on Mon Oct 17 09:45:43 2011 for SPC by Doxygen

3.2 Program Structure 14

• Structures

• Arrays

Variables are declared using the keyword(s) for the desired type, followed by a comma-
separated list of variable names and terminated by a semicolon (’;’). Optionally, an
initial value for each variable may be specified using an equals sign (’=’) after the
variable name. Several examples appear below:

int x; // declare x
bool y,z; // declare y and z
long a=1,b; // declare a and b, initialize a to 1
int data[10]; // an array of 10 zeros in data
bool flags[] = {true, true, false, false};

Global variables are declared at the program scope (outside of any code block). Once
declared, they may be used within all tasks, functions, and subroutines. Their scope
begins at declaration and ends at the end of the program.

Local variables may be declared within tasks and functions. Such variables are only
accessible within the code block in which they are defined. Specifically, their scope
begins with their declaration and ends at the end of their code block. In the case of
local variables, a compound statement (a group of statements bracketed by ’{’ and ’}’)
is considered a block:

int x; // x is global

task main()
{

int y; // y is local to task main
x = y; // ok
{ // begin compound statement

int z; // local z declared
y = z; // ok

}
y = z; // error - z no longer in scope

}

task foo()
{

x = 1; // ok
y = 2; // error - y is not global

}

3.2.4.1 bool

In SPC the bool type is a signed 32-bit value.

Normally you would only store a zero or one in a variable of this type.

bool flag=true;

Generated on Mon Oct 17 09:45:43 2011 for SPC by Doxygen

3.2 Program Structure 15

3.2.4.2 char

In SPC the char type is a signed 32-bit value.

The char type is often used to store the ASCII value of a single character. Use Character
Constants page has more details about this usage.

char ch=12;
char test = ’A’;

3.2.4.3 int

In SPC the int type is a signed 32-bit value.

This type can store values from INT_MIN to INT_MAX.

int x = 0xfff;
int y = -23;

3.2.4.4 long

In SPC the long type is a signed 32-bit value.

This type can store values from LONG_MIN to LONG_MAX.

long x = 2147000000;
long y = -88235;

3.2.5 Structures

SPC supports user-defined aggregate types known as structs.

These are declared very much like you declare structs in a C program.

struct car
{

int car_type;
int manu_year;

};

struct person
{

int age;
car vehicle;

};

person myPerson;

After you have defined the structure type you can use the new type to declare a variable
or nested within another structure type declaration. Members (or fields) within the
struct are accessed using a dot notation.

Generated on Mon Oct 17 09:45:43 2011 for SPC by Doxygen

3.3 Statements 16

myPerson.age = 40;
anotherPerson = myPerson;
fooBar.car_type = honda;
fooBar.manu_year = anotherPerson.age;

You can assign structs of the same type but the compiler will complain if the types do
not match.

3.2.6 Arrays

SPC also support arrays.

Arrays are declared the same way as ordinary variables, but with an open and close
bracket following the variable name. Arrays must either have a non-empty size decla-
ration or an initializer following the declaration.

int my_array[3]; // declare an array with 3 elements

To declare arrays with more than one dimension simply add more pairs of square brack-
ets. The maximum number of dimensions supported in SPC is 4.

bool my_array[3][3]; // declare a 2-dimensional array

Arrays of up to two dimensions may be initialized at the point of declaration using the
following syntax:

int X[] = {1, 2, 3, 4}, Y[]={10, 10}; // 2 arrays
int matrix[][] = {{1, 2, 3}, {4, 5, 6}};

The elements of an array are identified by their position within the array (called an
index). The first element has an index of 0, the second has index 1, and so on. For
example:

my_array[0] = 123; // set first element to 123
my_array[1] = my_array[2]; // copy third into second

SPC also supports specifying an initial size for both global and local arrays. The com-
piler automatically generates the required code to correctly initialize the array to zeros.
If an array declaration includes both a size and a set of initial values the size is ignored
in favor of the specified values.

task main()
{
int myArray[10][10];
int myVector[10];

}

3.3 Statements

The body of a code block (task or function) is composed of statements.

Generated on Mon Oct 17 09:45:43 2011 for SPC by Doxygen

3.3 Statements 17

Statements are terminated with a semi-colon (’;’), as you have seen in the example
code above.

• Variable Declaration

• Assignment

• Control Structures

• The asm statement

• Other SPC Statements

3.3.1 Variable Declaration

Variable declaration, which has already been discussed, is one type of statement.

Its purpose is to declare a local variable (with optional initialization) for use within the
code block. The syntax for a variable declaration is shown below.

arg_type variables;

Here arg_type must be one of the types supported by SPC. Following the type are vari-
able names, which must be a comma-separated list of identifiers with optional initial
values as shown in the code fragment below.

name[=expression]

Arrays of variables may also be declared:

int array[n][=initializer];

You can also define variables using user-defined aggregate structure types.

struct TPerson {
int age;
string name;

};
TPerson bob; // cannot be initialized at declaration

3.3.2 Assignment

Once declared, variables may be assigned the value of an expression using the syntax
shown in the code sample below.

variable assign_operator expression;

There are eleven different assignment operators. The most basic operator, ’=’, simply
assigns the value of the expression to the variable. The other operators modify the
variable’s value in some other way as shown in the table below.

Generated on Mon Oct 17 09:45:43 2011 for SPC by Doxygen

3.3 Statements 18

Operator Action
= Set variable to expression
+= Add expression to variable
-= Subtract expression from variable
∗= Multiple variable by expression
/= Divide variable by expression
%= Set variable to remainder after dividing

by expression
&= Bitwise AND expression into variable
|= Bitwise OR expression into variable
∧= Bitwise exclusive OR into variable
>>= Right shift variable by expression
<<= Left shift variable by expression

Operators

The code sample below shows a few of the different types of operators that you can use
in SPC expressions.

x = 2; // set x to 2
y = 7; // set y to 7
x += y; // x is 9, y is still 7

3.3.3 Control Structures

An SPC task or function usually contains a collection of nested control structures.

There are several types described below.

• The compound statement

• The if statement

• The if-else statement

• The while statement

• The do statement

• The for statement

• The repeat statement

• The switch statement

• The goto statement

• The until statement

Generated on Mon Oct 17 09:45:43 2011 for SPC by Doxygen

3.3 Statements 19

3.3.3.1 The compound statement

The simplest control structure is a compound statement.

This is a list of statements enclosed within curly braces (’{’ and ’}’):

{
x = 1;
y = 2;

}

Although this may not seem very significant, it plays a crucial role in building more
complicated control structures. Many control structures expect a single statement as
their body. By using a compound statement, the same control structure can be used to
control multiple statements.

3.3.3.2 The if statement

The if statement evaluates a condition.

If the condition is true, it executes one statement (the consequence). The value of a
condition is considered to be false only when it evaluates to zero. If it evaluates to any
non-zero value, it is true. The syntax for an if statement is shown below.

if (condition) consequence

The condition of an if-statement must be enclosed in parentheses, as shown in the code
sample below. The compound statement in the last example allows two statements to
execute as a consequence of the condition being true.

if (x==1) y = 2;
if (x==1) { y = 1; z = 2; }

3.3.3.3 The if-else statement

The if-else statement evaluates a condition.

If the condition is true, it executes one statement (the consequence). A second state-
ment (the alternative), preceded by the keyword else, is executed if the condition is
false. The value of a condition is considered to be false only when it evaluates to zero.
If it evaluates to any non-zero value, it is true. The syntax for an if-else statement is
shown below.

if (condition) consequence else alternative

The condition of an if-statement must be enclosed in parentheses, as shown in the code
sample below. The compound statement in the last example allows two statements to
execute as a consequence of the condition being true as well as two which execute
when the condition is false.

Generated on Mon Oct 17 09:45:43 2011 for SPC by Doxygen

3.3 Statements 20

if (x==1)
y = 3;

else
y = 4;

if (x==1) {
y = 1;
z = 2;

}
else {

y = 3;
z = 5;

}

3.3.3.4 The while statement

The while statement is used to construct a conditional loop.

The condition is evaluated, and if true the body of the loop is executed, then the con-
dition is tested again. This process continues until the condition becomes false (or a
break statement is executed). The syntax for a while loop appears in the code fragment
below.

while (condition) body

Because the body of a while statement must be a single statement, it is very common to
use a compound statement as the body. The sample below illustrates this usage pattern.

while(x < 10)
{

x = x+1;
y = y*2;

}

3.3.3.5 The do statement

A variant of the while loop is the do-while loop.

The syntax for this control structure is shown below.

do body while (condition)

The difference between a while loop and a do-while loop is that the do-while loop
always executes the body at least once, whereas the while loop may not execute it at
all.

do
{

x = x+1;
y = y*2;

} while(x < 10);

Generated on Mon Oct 17 09:45:43 2011 for SPC by Doxygen

3.3 Statements 21

3.3.3.6 The for statement

Another kind of loop is the for loop.

This type of loop allows automatic initialization and incrmementation of a counter
variable. It uses the syntax shown below.

for(statement1 ; condition ; statement2) body

A for loop always executes statement1, and then it repeatedly checks the condition.
While the condition remains true, it executes the body followed by statement2. The for
loop is equivalent to the code shown below.

statement1;
while(condition)
{

body
statement2;

}

Frequently, statement1 sets a loop counter variable to its starting value. The condition
is generally a relational statement that checks the counter variable against a termination
value, and statement2 increments or decrements the counter value.

Here is an example of how to use the for loop:

for (int i=0; i<8; i++)
{

NumOut(0, LCD_LINE1-i*8, i);
}

3.3.3.7 The repeat statement

The repeat statement executes a loop a specified number of times.

This control structure is not included in the set of Standard C looping constructs. SPC
inherits this statement from NQC. The syntax is shown below.

repeat (expression) body

The expression determines how many times the body will be executed. Note: the
expression following the repeat keyword is evaluated a single time and then the body
is repeated that number of times. This is different from both the while and do-while
loops which evaluate their condition each time through the loop.

Here is an example of how to use the repeat loop:

int i=0;
repeat (8)
{

printf("%d\n", i++);
}

Generated on Mon Oct 17 09:45:43 2011 for SPC by Doxygen

3.3 Statements 22

3.3.3.8 The switch statement

A switch statement executes one of several different code sections depending on the
value of an expression.

One or more case labels precede each code section. Each case must be a constant and
unique within the switch statement. The switch statement evaluates the expression,
and then looks for a matching case label. It will execute any statements following the
matching case until either a break statement or the end of the switch is reached. A
single default label may also be used - it will match any value not already appearing in
a case label. A switch statement uses the syntax shown below.

switch (expression) body

Additional information about the case and default labels and the break statement can
be found below.

• The case label

• The default label

• The break statement

A typical switch statement might look like this:

switch(x)
{

case 1:
// do something when x is 1
break;

case 2:
case 3:

// do something else when x is 2 or 3
break;

default:
// do this when x is not 1, 2, or 3
break;

}

3.3.3.8.1 The case label The case label in a switch statement is not a statement in
itself.

It is a label that precedes a list of statements. Multiple case labels can precede the same
statement. The case label has the syntax shown below.

case constant_expression :

The switch statement page contains an example of how to use the case label.

Generated on Mon Oct 17 09:45:43 2011 for SPC by Doxygen

3.3 Statements 23

3.3.3.8.2 The default label The default label in a switch statement is not a state-
ment in itself.

It is a label that precedes a list of statements. There can be only one default label within
a switch statement. The default label has the syntax shown below.

default :

The switch statement page contains an example of how to use the default label.

3.3.3.9 The goto statement

The goto statement forces a program to jump to the specified location.

Statements in a program can be labeled by preceding them with an identifier and a
colon. A goto statement then specifies the label that the program should jump to. You
can only branch to a label within the current function or task, not from one function or
task to another.

Here is an example of an infinite loop that increments a variable:

my_loop:
x++;
goto my_loop;

The goto statement should be used sparingly and cautiously. In almost every case,
control structures such as if, while, and switch make a program much more readable
and maintainable than using goto.

3.3.3.10 The until statement

SPC also defines an until macro for compatibility with NQC.

This construct provides a convenient alternative to the while loop. The actual definition
of until is shown below.

#define until(c) while(!(c))

In other words, until will continue looping until the condition becomes true. It is most
often used in conjunction with an empty body statement or a body which simply yields
to other tasks:

until(EVENT_OCCURS); // wait for some event to occur

3.3.4 The asm statement

The asm statement is used to define many of the SPC API calls.

The syntax of the statement is shown below.

Generated on Mon Oct 17 09:45:43 2011 for SPC by Doxygen

3.3 Statements 24

asm {
one or more lines of SPRO assembly language
}

The statement simply emits the body of the statement as SuperPro ASM code and
passes it directly to the compiler’s backend. The asm statement can often be used to
optimize code so that it executes as fast as possible on the SuperPro firmware. The
following example shows an asm block containing variable declarations, labels, and
basic SPRO ASM statements as well as comments.

asm {
MVI WORK2, 12
MOV PTR, WORK2
MOV (PTR), WORK1
INC PTR

}

The asm block statement and these special ASM keywords are used throughout the
SPC API. You can have a look at the SPCDefs.h header file for several examples of
how they are used. To keep the main SPC code as "C-like" as possible and for the sake
of better readability SPC asm block statements can be wrapped in preprocessor macros
and placed in custom header files which are included using #include.

3.3.5 Other SPC Statements

SPC supports a few other statement types.

The other SPC statements are described below.

• The function call statement

• The start statement

• The break statement

• The continue statement

• The return statement

Many expressions are not legal statements. A notable exception are expressions using
increment (++) or decrement (--) operators.

x++;

The empty statement (just a bare semicolon) is also a legal statement.

Generated on Mon Oct 17 09:45:43 2011 for SPC by Doxygen

3.3 Statements 25

3.3.5.1 The function call statement

A function call can also be a statement of the following form:

name(arguments);

The arguments list is a comma-separated list of expressions. The number and type of
arguments supplied must match the definition of the function itself. Optionally, the
return value may be assigned to a variable.

3.3.5.2 The start statement

You can start a task with the start statement.

This statement can be used with both the standard and enhanced NBC/SPC firmwares.
The resulting operation is a native opcode in the enhanced firmware but it requires
special compiler-generated subroutines in order to work with the standard firmware.

start task_name;

3.3.5.3 The break statement

Within loops (such as a while loop) you can use the break statement to exit the loop
immediately.

It only exits out of the innermost loop

break;

The break statement is also a critical component of most switch statements. It prevents
code in subsequent code sections from being executed, which is usually a program-
mer’s intent, by immediately exiting the switch statement. Missing break statements in
a switch are a frequent source of hard-to-find bugs.

Here is an example of how to use the break statement:

while (x<100) {
x = get_new_x();
if (button_pressed())
break;

process(x);
}

3.3.5.4 The continue statement

Within loops you can use the continue statement to skip to the top of the next iteration
of the loop without executing any of the code in the loop that follows the continue
statement.

Generated on Mon Oct 17 09:45:43 2011 for SPC by Doxygen

3.4 Expressions 26

continue;

Here is an example of how to use the continue statement:

while (x<100) {
ch = get_char();
if (ch != ’s’)
continue;

process(ch);
}

3.3.5.5 The return statement

If you want a function to return a value or to return before it reaches the end of its code,
use a return statement.

An expression may optionally follow the return keyword and, when present, is the
value returned by the function. The type of the expression must be compatible with the
return type of the function.

return [expression];

3.4 Expressions

Values are the most primitive type of expressions.

More complicated expressions are formed from values using various operators.

Numerical constants in the SuperPro are represented as integer values. SPC internally
uses 32 bit floating point math for constant expression evaluation. Numeric constants
are written as either decimal (e.g. 123, 3.14) or hexadecimal (e.g. 0xABC). Presently,
there is very little range checking on constants, so using a value larger than expected
may produce unusual results.

Two special values are predefined: true and false. The value of false is zero (0), while
the value of true is one (1). The same values hold for relational operators (e.g. <):
when the relation is false the value is 0, otherwise the value is 1.

Values may be combined using operators. SPC operators are listed here in order of
precedence from highest to lowest.

Generated on Mon Oct 17 09:45:43 2011 for SPC by Doxygen

3.4 Expressions 27

Operator Description Associativity Restriction Example
abs() Absolute

value
n/a abs(x)

sign() Sign of
operand

n/a sign(x)

++, -- Postfix
incremen-
t/decrement

left variables only x++

++, -- Prefix
incremen-
t/decrement

right variables only ++x

- Unary minus right -x
∼ Bitwise

negation
(unary)

right ∼123

! Logical
negation

right !x

∗, /, % Multiplica-
tion, division,
modulus

left x ∗ y

+, - Addition,
subtraction

left x + y

<<, >> Bitwise shift
left and right

left x << 4

<, >, <=,
>=

relational
operators

left x < y

==, != equal to, not
equal to

left x == 1

& Bitwise AND left x & y
∧ Bitwise

exclusive OR
left x ∧ y

| Bitwise
inclusive OR

left x | y

&& Logical AND left x && y
|| Logical OR left x || y
?: Ternary

conditional
value

right x==1 ? y : z

Expression Operators

Where needed, parentheses are used to change the order of evaluation:

x = 2 + 3 * 4; // set x to 14
y = (2 + 3) * 4; // set y to 20

• Conditions

Generated on Mon Oct 17 09:45:43 2011 for SPC by Doxygen

3.4 Expressions 28

3.4.1 Conditions

Comparing two expressions forms a condition.

A condition may be negated with the logical negation operator, or two conditions com-
bined with the logical AND and logical OR operators. Like most modern computer lan-
guages, SPC supports something called "short-circuit" evaluation of conditions. This
means that if the entire value of the conditional can be logically determined by only
evaluating the left hand term of the condition, then the right hand term will not be
evaluated.

The table below summarizes the different types of conditions.

Condition Meaning
Expr true if expr is not equal to 0
Expr1 == expr2 true if expr1 equals expr2
Expr1 != expr2 true if expr1 is not equal to expr2
Expr1 < expr2 true if one expr1 is less than expr2
Expr1 <= expr2 true if expr1 is less than or equal to

expr2
Expr1 > expr2 true if expr1 is greater than expr2
Expr1 >= expr2 true if expr1 is greater than or equal to

expr2
! condition logical negation of a condition - true if

condition is false
Cond1 && cond2 logical AND of two conditions (true if

and only if both conditions are true)
Cond1 || cond2 logical OR of two conditions (true if

and only if at least one of the conditions
are true)

Conditions

There are also two special constant conditions which can be used anywhere that the
above conditions are allowed. They are listed below.

• The true condition

• The false condition

You can use conditions in SPC control structures, such as the if-statement and the while
or until statements, to specify exactly how you want your program to behave.

3.4.1.1 The true condition

The keyword true has a value of one.

It represents a condition that is always true.

Generated on Mon Oct 17 09:45:43 2011 for SPC by Doxygen

3.5 The Preprocessor 29

3.4.1.2 The false condition

The keyword false has a value of zero.

It represents a condition that is always false.

3.5 The Preprocessor

SPC also includes a preprocessor that is modeled after the Standard C preprocessor.

The C preprocessor processes a source code file before the compiler does. It handles
such tasks as including code from other files, conditionally including or excluding
blocks of code, stripping comments, defining simple and parameterized macros, and
expanding macros wherever they are encountered in the source code.

The SPC preprocessor implements the following standard preprocessor directives: #in-
clude, #define, #ifdef, #ifndef, #endif, #if, #elif, #undef, ##, #line, #error, and #pragma.
Its implementation is close to a standard C preprocessor’s, so most preprocessor direc-
tives should work as C programmers expect in SPC. Any significant deviations are
explained below.

• include

• define

• ## (Concatenation)

• Conditional Compilation

3.5.1 #include

The #include command works as in Standard C, with the caveat that the filename must
be enclosed in double quotes.

There is no notion of a system include path, so enclosing a filename in angle brackets
is forbidden.

#include "foo.h" // ok
#include <foo.h> // error!

SPC programs can begin with #include "NXCDefs.h" but they don’t need to. This
standard header file includes many important constants and macros, which form the
core SPC API. SPC no longer require that you manually include the NXCDefs.h header
file. Unless you specifically tell the compiler to ignore the standard system files, this
header file is included automatically.

Generated on Mon Oct 17 09:45:43 2011 for SPC by Doxygen

3.5 The Preprocessor 30

3.5.2 #define

The #define command is used for macro substitution.

Redefinition of a macro will result in a compiler warning. Macros are normally re-
stricted to one line because the newline character at the end of the line acts as a ter-
minator. However, you can write multiline macros by instructing the preprocessor to
ignore the newline character. This is accomplished by escaping the newline character
with a backslash (’\’). The backslash character must be the very last character in the
line or it will not extend the macro definition to the next line. The code sample below
shows how to write a multi-line preprocessor macro.

#define foo(x) do { bar(x); \\
baz(x); } while(false)

The #undef directive may be used to remove a macro’s definition.

3.5.3 ## (Concatenation)

The ## directive works similar to the C preprocessor.

It is replaced by nothing, which causes tokens on either side to be concatenated to-
gether. Because it acts as a separator initially, it can be used within macro functions to
produce identifiers via combination with parameter values.

3.5.4 Conditional Compilation

Conditional compilation works similar to the C preprocessor’s conditional compilation.

The following preprocessor directives may be used:

Directive Meaning
#ifdef symbol If symbol is defined then compile the

following code
#ifndef symbol If symbol is not defined then compile

the following code
#else Switch from compiling to not

compiling and vice versa
#endif Return to previous compiling state
#if condition If the condition evaluates to true then

compile the following code
#elif Same as #else but used with #if

Conditional compilation directives

See the SPCDefs.h header files for many examples of how to use conditional compila-
tion.

Generated on Mon Oct 17 09:45:43 2011 for SPC by Doxygen

4 SuperPro pre-defined system constants 31

4 SuperPro pre-defined system constants

Pre-defined system constants for directly interacting with the SuperPro hardware.

The spmem.h header file uses system constants to define names for the I/O mapped
memory addresses of the SuperPro board you are targetting. A complete list of these
system constants appears below:

• ADChannel0/1/2/3

• DigitalIn

• DigitalOut

• DigitalControl

• StrobeControl

• Timer0/1/2/3

• SerialInCount

• SerialInByte

• SerialOutCount

• SerialOutByte

• DAC0Mode/DAC1Mode

• DAC0Frequency/DAC1Frequency

• DAC0Voltage/DAC1Voltage

• LEDControl

• SystemClock

4.1 ADChannel0/1/2/3

These variables return the voltage on pins A0/1/2/3 as a value in the range 0 - 1023.

This range of values represents a voltage range of 0 - 3.3 volts, or∼3.222 mV per step.

//convert channel 0 reading to millivolts
int voltage = (ADChannel0 * 3222) / 1000 ;

Generated on Mon Oct 17 09:45:43 2011 for SPC by Doxygen

4.2 DigitalIn 32

4.2 DigitalIn

This variable returns the current state of the 8 digital lines, B0 - B7.

This includes the state of any of the lines which are configured as outputs.

if (DigitalIn & DIGI_PIN7 == DIGI_PIN7) //check if bit 7 set
{

// do something here
}

4.3 DigitalOut

This variable sets the current state of any of the 8 digital lines, B0 - B7 which are set
as outputs.

See SuperPro digital pin constants.

DigitalOut = DIGI_PIN0 ; //set B0

4.4 DigitalControl

This variable defines which of the 8 digital lines, B0 - B7, are set as outputs.

If the corresponding bit in 1, the line is configured as an output, else it will be an input.
See SuperPro digital pin constants.

DigitalControl = 0x0F ; //set DIGI_PIN0 - DIGI_PIN3 as outputs

4.5 StrobeControl

This variable allows control over the 6 strobe lines.

See SuperPro Strobe control constants.

D31-D6 D5 D4 D3 D2 D1 D0
- WR RD S3 S2 S1 S0

Strobe Lines

There are 4 general purpose outputs, S0 - S3. These 4 lines may be used as digital out-
puts. There are 2 special purpose outputs, RD and WR. These lines are automatically
activated when DigitalIn is read or DigitalOut is written. When DigitalIn is read, the
RD output will pulse for about 10 S. If the StrobeControl RD bit is 0, the RD output
will pulse high, if the bit is 1, the output will pulse low.

Generated on Mon Oct 17 09:45:43 2011 for SPC by Doxygen

4.5 StrobeControl 33

The timing for a read. An external device which is relying on the RD strobe output for
synchronizing with the SuperPro hardware may use the leading edge of the RD strobe
to present data on B0 - B7. The device must have the data ready within 9 microseconds
of the start (leading edge) of the RD strobe. The timing for a write.

An external device which is relying on the WR strobe output for synchronizing with the
SuperPro hardware may use the leading edge of the WR strobe as either an edge type
clock or a latch type due to the data being presented on B0 - B7 at least 1 microsecond
before the strobe is active until 1 microsecond after.

DigitalControl = 0xFF ; //set B0 - B7 as outputs
DigitalOut = outputbyte ;
DigitalControl = 0x00 ; //reset B0 - B7 to inputs

Generated on Mon Oct 17 09:45:43 2011 for SPC by Doxygen

4.6 Timer0/1/2/3 34

In a typical example of using the strobes to use the B0-7 bus bi-directionally:

StrobeControl = 0x10 ; //set RD active low and WR active high
DigitalControl = 0x00 ; //ensure outputs are inactive
// ...
datain = DigitalIn ; //read DATAIN byte
// ...
DigitalControl = 0xFF ; //set B0 - B7 as outputs
DigitalOut = dataout ; //write DATAOUT byte
DigitalControl = 0x00 ; //reset B0 - B7 to inputs

4.6 Timer0/1/2/3

The timers are count-down and halt at zero types.

They count down at the rate of 1000 counts per second, i.e., one count per millisecond.

Timer1 = 1000 ; //set timer1 to run for 1 second
while (Timer1 != 0) ; /wait for timer1 to expire

4.7 SerialInCount

The SerialInCount returns the number of characters waiting in an input FIFO (First In,
First Out) buffer of up to 255 entries.

Generated on Mon Oct 17 09:45:43 2011 for SPC by Doxygen

4.8 SerialInByte 35

Characters can be transferred from the host PC to the SuperPro via a terminal emulation
program running at 115200bps, 8 bits, no parity. A program can wait for a character to
become available using this value.

while (SerialInCount == 0) ; //wait for a character

4.8 SerialInByte

The SerialInByte returns the character waiting in the input FIFO receive queue.

A program should wait for a character to become available before performing a read
from SerialInByte. The result of reading from an empty FIFO receive queue is unpre-
dictable.

while (SerialInCount == 0) ; //wait for a character
kbchar = SerialInByte ; //get it

4.9 SerialOutCount

The SerialOutCount returns the number of characters waiting in an output FIFO send
queue of 255 entries.

Characters from the output FIFO are transferred to the host PC at approximately 10,000
per second. If the program is generating characters at a rate greater than this, the output
FIFO will start to fill up. This state can be checked by the program by comparing the
count with SERIAL_BUFFER_SIZE. In the event that this check is not performed, no
data will be lost since the program will stall waiting for space to become available in
the FIFO.

while (SerialOutCount > 254) ; //wait for space for a character

4.10 SerialOutByte

The SerialOutByte sends a character to the output FIFO send queue.

The result of writing to a full FIFO send queue is to cause the program to stall. The
send queue can hold up to 255 bytes.

while (SerialOutCount > 254) ; //wait for space for a character
SerialOutByte = ’C’ ; //send a byte

4.11 DAC0Mode/DAC1Mode

The DACnMode controls the operation of the analog output pins O0/O1.

The following modes are available for use:

Generated on Mon Oct 17 09:45:43 2011 for SPC by Doxygen

4.12 DAC0Frequency/DAC1Frequency 36

Mode Value Function
DAC_MODE_DCOUT 0 Steady (DC) voltage

output
DAC_MODE_-
SINEWAVE

1 Sine wave output

DAC_MODE_-
SQUAREWAVE

2 Square wave output

DAC_MODE_-
SAWPOSWAVE

3 Positive going sawtooth
output

DAC_MODE_-
SAWNEGWAVE

4 Negative going sawtooth
output

DAC_MODE_-
TRIANGLEWAVE

5 Triangle wave output

DAC_MODE_-
PWMVOLTAGE

6 PWM square wave
output

Analog Output Modes

Mode DAC_MODE_DCOUT uses the DACnVoltage to control the output voltage be-
tween 0 and 3.3 volts in steps of 3.222 mV.

The waveforms associated with modes DAC_MODE_SINEWAVE, DAC_MODE_-
SQUAREWAVE, DAC_MODE_SAWPOSWAVE, DAC_MODE_SAWNEGWAVE,
and DAC_MODE_TRIANGLEWAVE are centered around a DC offset of 1.65 volts.
The DACnVoltage controls the amplitude from +/- 0 to +/- 1.65 volts.

The waveform associated with mode DAC_MODE_PWMVOLTAGE is a rectangular
waveform switching between 0 and 3.3 volts. The DACnVoltage controls the mark to
space ratio between 0% and 100%. The average DC value of this waveform thus varies
from 0 to 3.3 volts.

DAC0Mode = DAC_MODE_PWMVOLTAGE; // use PWM output
DAC0Frequency = 4000; // 4khz frequency.
DAC0Voltage = 512; // mark/space ratio = 50%

4.12 DAC0Frequency/DAC1Frequency

The DACnFrequency controls the generator frequency for the analog out-
put pins O0/O1 for DACnModes DAC_MODE_SINEWAVE, DAC_MODE_-
SQUAREWAVE, DAC_MODE_SAWPOSWAVE, DAC_MODE_SAWNEGWAVE,
DAC_MODE_TRIANGLEWAVE, and DAC_MODE_PWMVOLTAGE.

The available frequency range is 1 - 8000 Hz.

DAC0Mode = DAC_MODE_SINEWAVE; // use sine wave output
DAC0Frequency = 4000; // 4khz frequency.
DAC0Voltage = 1024; // full range amplitude

Generated on Mon Oct 17 09:45:43 2011 for SPC by Doxygen

4.13 DAC0Voltage/DAC1Voltage 37

4.13 DAC0Voltage/DAC1Voltage

The DACnVoltage controls the output voltage levels for the analog output pins O0/O1.

DACnMode DAC_MODE_DCOUT uses the DACnVoltage to control the output volt-
age between 0 and 3.3 volts in steps of 3.222 mV.

For DACnModes DAC_MODE_SINEWAVE, DAC_MODE_SQUAREWAVE, DAC_-
MODE_SAWPOSWAVE, DAC_MODE_SAWNEGWAVE, and DAC_MODE_-
TRIANGLEWAVE, the DACnVoltage controls the amplitude from +/- 0 to +/- 1.65
volts.

For DACnMode DAC_MODE_PWMVOLTAGE, DACnVoltage controls the mark to
space ratio between 0% and 100%. The average DC value of this waveform thus varies
from 0 to 3.3 volts.

DAC0Mode = DAC_MODE_DCOUT; // DC ouput voltage
DAC0Voltage = 500; // set voltage level of O0 to 500*3.222 mV

4.14 LEDControl

The LEDControl location can be used to turn two on-board LEDs on and off.

Bit 0 controls the state of a red LED, while bit 1 controls a blue LED.

LEDControl = LED_BLUE | LED_RED; // turn on both the blue and red LEDs

4.15 SystemClock

The SystemClock returns the number of milliseconds since power was applied to the
SuperPro board.

long x = SystemClock;

5 Module Documentation

5.1 Miscellaneous SPC constants

Miscellaneous constants for use in SPC.

Modules

• Data type limits
Constants that define various data type limits.

Generated on Mon Oct 17 09:45:43 2011 for SPC by Doxygen

5.2 SuperPro analog output mode constants 38

Defines

• #define TRUE 1
• #define FALSE 0
• #define SERIAL_BUFFER_SIZE 255

5.1.1 Detailed Description

Miscellaneous constants for use in SPC.

5.1.2 Define Documentation

5.1.2.1 #define FALSE 0

A false value

5.1.2.2 #define SERIAL_BUFFER_SIZE 255

Serial port receive and send buffer size

5.1.2.3 #define TRUE 1

A true value

5.2 SuperPro analog output mode constants

Constants for controlling the 2 analog output modes.

Defines

• #define DAC_MODE_DCOUT 0
• #define DAC_MODE_SINEWAVE 1
• #define DAC_MODE_SQUAREWAVE 2
• #define DAC_MODE_SAWPOSWAVE 3
• #define DAC_MODE_SAWNEGWAVE 4
• #define DAC_MODE_TRIANGLEWAVE 5
• #define DAC_MODE_PWMVOLTAGE 6

Generated on Mon Oct 17 09:45:43 2011 for SPC by Doxygen

5.2 SuperPro analog output mode constants 39

5.2.1 Detailed Description

Constants for controlling the 2 analog output modes. Two analog outputs, which can
span 0 to 3.3 volts, can be programmed to output a steady voltage or can be pro-
grammed to output a selection of waveforms over a range of frequencies.

In the DC output mode, the DAC0/DAC1 voltage fields control the voltage on the two
analog outputs in increments of ∼3.2mV from 0 - 1023 giving 0 - 3.3v.

In waveform modes, the channel outputs will center on 1.65 volts when generating
waveforms. The DAC0/DAC1 voltage fields control the signal levels of the waveforms
by adjusting the peak to peak signal levels from 0 - 3.3v.

In PWFM voltage mode, the channel outputs will create a variable mark:space ratio
square wave at 3.3v signal level. The average output voltage is set by the O0/O1 voltage
fields.

5.2.2 Define Documentation

5.2.2.1 #define DAC_MODE_DCOUT 0

Steady (DC) voltage output.

5.2.2.2 #define DAC_MODE_PWMVOLTAGE 6

PWM square wave output.

5.2.2.3 #define DAC_MODE_SAWNEGWAVE 4

Negative going sawtooth output.

5.2.2.4 #define DAC_MODE_SAWPOSWAVE 3

Positive going sawtooth output.

5.2.2.5 #define DAC_MODE_SINEWAVE 1

Sine wave output.

5.2.2.6 #define DAC_MODE_SQUAREWAVE 2

Square wave output.

Generated on Mon Oct 17 09:45:43 2011 for SPC by Doxygen

5.3 SuperPro LED control constants 40

5.2.2.7 #define DAC_MODE_TRIANGLEWAVE 5

Triangle wave output.

5.3 SuperPro LED control constants

Constants for controlling the 2 onboard LEDs.

Defines

• #define LED_BLUE 0x02
• #define LED_RED 0x01

5.3.1 Detailed Description

Constants for controlling the 2 onboard LEDs.

5.3.2 Define Documentation

5.3.2.1 #define LED_BLUE 0x02

Turn on the blue onboard LED.

5.3.2.2 #define LED_RED 0x01

Turn on the red onboard LED.

5.4 SuperPro digital pin constants

Constants for controlling the 8 digital pins.

Defines

• #define DIGI_PIN0 0x01
• #define DIGI_PIN1 0x02
• #define DIGI_PIN2 0x04
• #define DIGI_PIN3 0x08
• #define DIGI_PIN4 0x10
• #define DIGI_PIN5 0x20
• #define DIGI_PIN6 0x40
• #define DIGI_PIN7 0x80

Generated on Mon Oct 17 09:45:43 2011 for SPC by Doxygen

5.4 SuperPro digital pin constants 41

5.4.1 Detailed Description

Constants for controlling the 8 digital pins. The eight digital inputs are returned as a
byte representing the state of the eight inputs. The eight digital outputs are controlled
by two bytes, the first of which sets the state of any of the signals which have been de-
fined as outputs and the second of which controls the input/output state of each signal.

5.4.2 Define Documentation

5.4.2.1 #define DIGI_PIN0 0x01

Access digital pin 0 (B0)

5.4.2.2 #define DIGI_PIN1 0x02

Access digital pin 1 (B1)

5.4.2.3 #define DIGI_PIN2 0x04

Access digital pin 2 (B2)

5.4.2.4 #define DIGI_PIN3 0x08

Access digital pin 3 (B3)

5.4.2.5 #define DIGI_PIN4 0x10

Access digital pin 4 (B4)

5.4.2.6 #define DIGI_PIN5 0x20

Access digital pin 5 (B5)

5.4.2.7 #define DIGI_PIN6 0x40

Access digital pin 6 (B6)

5.4.2.8 #define DIGI_PIN7 0x80

Access digital pin 7 (B7)

Generated on Mon Oct 17 09:45:43 2011 for SPC by Doxygen

5.5 SuperPro Strobe control constants 42

5.5 SuperPro Strobe control constants

Constants for manipulating the six digital strobe outputs.

Defines

• #define STROBE_S0 0x01
• #define STROBE_S1 0x02
• #define STROBE_S2 0x04
• #define STROBE_S3 0x08
• #define STROBE_READ 0x10
• #define STROBE_WRITE 0x20

5.5.1 Detailed Description

Constants for manipulating the six digital strobe outputs. Six digital strobe outputs are
available. One is pre-configured as a read strobe, another is pre-configured as a write
strobe while the other four can be set to a high or low logic level. These strobe lines
enable external devices to synchronize with the digital data port and multiplex the eight
digital input/output bits to wider bit widths.

The RD and WR bits set the inactive state of the read and write strobe outputs. Thus,
if these bits are set to 0, the strobe outputs will pulse high.

5.5.2 Define Documentation

5.5.2.1 #define STROBE_READ 0x10

Access read pin (RD)

5.5.2.2 #define STROBE_S0 0x01

Access strobe 0 pin (S0)

5.5.2.3 #define STROBE_S1 0x02

Access strobe 1 pin (S1)

5.5.2.4 #define STROBE_S2 0x04

Access strobe 2 pin (S2)

Generated on Mon Oct 17 09:45:43 2011 for SPC by Doxygen

5.6 Data type limits 43

5.5.2.5 #define STROBE_S3 0x08

Access strobe 3 pin (S3)

5.5.2.6 #define STROBE_WRITE 0x20

Access write pin (WR)

5.6 Data type limits

Constants that define various data type limits.

Defines

• #define CHAR_BIT 32
• #define LONG_MIN -2147483648
• #define SCHAR_MIN -2147483648
• #define INT_MIN -2147483648
• #define CHAR_MIN -2147483648
• #define LONG_MAX 2147483647
• #define SCHAR_MAX 2147483647
• #define INT_MAX 2147483647
• #define CHAR_MAX 2147483647

5.6.1 Detailed Description

Constants that define various data type limits.

5.6.2 Define Documentation

5.6.2.1 #define CHAR_BIT 32

The number of bits in the char type

5.6.2.2 #define CHAR_MAX 2147483647

The maximum value of the char type

5.6.2.3 #define CHAR_MIN -2147483648

The minimum value of the char type

Generated on Mon Oct 17 09:45:43 2011 for SPC by Doxygen

5.7 Program slot constants 44

5.6.2.4 #define INT_MAX 2147483647

The maximum value of the int type

5.6.2.5 #define INT_MIN -2147483648

The minimum value of the int type

5.6.2.6 #define LONG_MAX 2147483647

The maximum value of the long type

5.6.2.7 #define LONG_MIN -2147483648

The minimum value of the long type

5.6.2.8 #define SCHAR_MAX 2147483647

The maximum value of the signed char type

5.6.2.9 #define SCHAR_MIN -2147483648

The minimum value of the signed char type

5.7 Program slot constants

Constants for use with the Run() function.

Defines

• #define SLOT1 0
• #define SLOT2 1
• #define SLOT3 2
• #define SLOT4 3
• #define SLOT5 4
• #define SLOT6 5
• #define SLOT7 6

Generated on Mon Oct 17 09:45:43 2011 for SPC by Doxygen

5.8 Log status constants 45

5.7.1 Detailed Description

Constants for use with the Run() function.

See also:

Run()

5.7.2 Define Documentation

5.7.2.1 #define SLOT1 0

Program slot 1.

5.7.2.2 #define SLOT2 1

Program slot 2.

5.7.2.3 #define SLOT3 2

Program slot 3.

5.7.2.4 #define SLOT4 3

Program slot 4.

5.7.2.5 #define SLOT5 4

Program slot 5.

5.7.2.6 #define SLOT6 5

Program slot 6.

5.7.2.7 #define SLOT7 6

Program slot 7.

5.8 Log status constants

Constants for use with the stat() function.

Generated on Mon Oct 17 09:45:43 2011 for SPC by Doxygen

5.9 Time constants 46

Defines

• #define LOG_STATUS_OPEN 2
• #define LOG_STATUS_BUSY 1
• #define LOG_STATUS_CLOSED 0

5.8.1 Detailed Description

Constants for use with the stat() function.

See also:

Run()

5.8.2 Define Documentation

5.8.2.1 #define LOG_STATUS_BUSY 1

Log file is busy.

5.8.2.2 #define LOG_STATUS_CLOSED 0

Log file is closed.

5.8.2.3 #define LOG_STATUS_OPEN 2

Log file is open.

5.9 Time constants

Constants for use with the Wait() function.

Defines

• #define MS_1 1
• #define MS_2 2
• #define MS_3 3
• #define MS_4 4
• #define MS_5 5
• #define MS_6 6
• #define MS_7 7

Generated on Mon Oct 17 09:45:43 2011 for SPC by Doxygen

5.9 Time constants 47

• #define MS_8 8
• #define MS_9 9
• #define MS_10 10
• #define MS_20 20
• #define MS_30 30
• #define MS_40 40
• #define MS_50 50
• #define MS_60 60
• #define MS_70 70
• #define MS_80 80
• #define MS_90 90
• #define MS_100 100
• #define MS_150 150
• #define MS_200 200
• #define MS_250 250
• #define MS_300 300
• #define MS_350 350
• #define MS_400 400
• #define MS_450 450
• #define MS_500 500
• #define MS_600 600
• #define MS_700 700
• #define MS_800 800
• #define MS_900 900
• #define SEC_1 1000
• #define SEC_2 2000
• #define SEC_3 3000
• #define SEC_4 4000
• #define SEC_5 5000
• #define SEC_6 6000
• #define SEC_7 7000
• #define SEC_8 8000
• #define SEC_9 9000
• #define SEC_10 10000
• #define SEC_15 15000
• #define SEC_20 20000
• #define SEC_30 30000
• #define MIN_1 60000

Generated on Mon Oct 17 09:45:43 2011 for SPC by Doxygen

5.9 Time constants 48

5.9.1 Detailed Description

Constants for use with the Wait() function.

See also:

Wait()

5.9.2 Define Documentation

5.9.2.1 #define MIN_1 60000

1 minute

5.9.2.2 #define MS_1 1

1 millisecond

5.9.2.3 #define MS_10 10

10 milliseconds

5.9.2.4 #define MS_100 100

100 milliseconds

5.9.2.5 #define MS_150 150

150 milliseconds

5.9.2.6 #define MS_2 2

2 milliseconds

5.9.2.7 #define MS_20 20

20 milliseconds

5.9.2.8 #define MS_200 200

200 milliseconds

Generated on Mon Oct 17 09:45:43 2011 for SPC by Doxygen

5.9 Time constants 49

5.9.2.9 #define MS_250 250

250 milliseconds

5.9.2.10 #define MS_3 3

3 milliseconds

5.9.2.11 #define MS_30 30

30 milliseconds

5.9.2.12 #define MS_300 300

300 milliseconds

5.9.2.13 #define MS_350 350

350 milliseconds

5.9.2.14 #define MS_4 4

4 milliseconds

5.9.2.15 #define MS_40 40

40 milliseconds

5.9.2.16 #define MS_400 400

400 milliseconds

5.9.2.17 #define MS_450 450

450 milliseconds

5.9.2.18 #define MS_5 5

5 milliseconds

Generated on Mon Oct 17 09:45:43 2011 for SPC by Doxygen

5.9 Time constants 50

5.9.2.19 #define MS_50 50

50 milliseconds

5.9.2.20 #define MS_500 500

500 milliseconds

5.9.2.21 #define MS_6 6

6 milliseconds

5.9.2.22 #define MS_60 60

60 milliseconds

5.9.2.23 #define MS_600 600

600 milliseconds

5.9.2.24 #define MS_7 7

7 milliseconds

5.9.2.25 #define MS_70 70

70 milliseconds

5.9.2.26 #define MS_700 700

700 milliseconds

5.9.2.27 #define MS_8 8

8 milliseconds

5.9.2.28 #define MS_80 80

80 milliseconds

Generated on Mon Oct 17 09:45:43 2011 for SPC by Doxygen

5.9 Time constants 51

5.9.2.29 #define MS_800 800

800 milliseconds

5.9.2.30 #define MS_9 9

9 milliseconds

5.9.2.31 #define MS_90 90

90 milliseconds

5.9.2.32 #define MS_900 900

900 milliseconds

5.9.2.33 #define SEC_1 1000

1 second

5.9.2.34 #define SEC_10 10000

10 seconds

5.9.2.35 #define SEC_15 15000

15 seconds

5.9.2.36 #define SEC_2 2000

2 seconds

5.9.2.37 #define SEC_20 20000

20 seconds

5.9.2.38 #define SEC_3 3000

3 seconds

Generated on Mon Oct 17 09:45:43 2011 for SPC by Doxygen

5.10 Tone constants 52

5.9.2.39 #define SEC_30 30000

30 seconds

5.9.2.40 #define SEC_4 4000

4 seconds

5.9.2.41 #define SEC_5 5000

5 seconds

5.9.2.42 #define SEC_6 6000

6 seconds

5.9.2.43 #define SEC_7 7000

7 seconds

5.9.2.44 #define SEC_8 8000

8 seconds

5.9.2.45 #define SEC_9 9000

9 seconds

5.10 Tone constants

Constants for use with the analog output frequency fields.

Defines

• #define TONE_A3 220
• #define TONE_AS3 233
• #define TONE_B3 247
• #define TONE_C4 262
• #define TONE_CS4 277

Generated on Mon Oct 17 09:45:43 2011 for SPC by Doxygen

5.10 Tone constants 53

• #define TONE_D4 294
• #define TONE_DS4 311
• #define TONE_E4 330
• #define TONE_F4 349
• #define TONE_FS4 370
• #define TONE_G4 392
• #define TONE_GS4 415
• #define TONE_A4 440
• #define TONE_AS4 466
• #define TONE_B4 494
• #define TONE_C5 523
• #define TONE_CS5 554
• #define TONE_D5 587
• #define TONE_DS5 622
• #define TONE_E5 659
• #define TONE_F5 698
• #define TONE_FS5 740
• #define TONE_G5 784
• #define TONE_GS5 831
• #define TONE_A5 880
• #define TONE_AS5 932
• #define TONE_B5 988
• #define TONE_C6 1047
• #define TONE_CS6 1109
• #define TONE_D6 1175
• #define TONE_DS6 1245
• #define TONE_E6 1319
• #define TONE_F6 1397
• #define TONE_FS6 1480
• #define TONE_G6 1568
• #define TONE_GS6 1661
• #define TONE_A6 1760
• #define TONE_AS6 1865
• #define TONE_B6 1976
• #define TONE_C7 2093
• #define TONE_CS7 2217
• #define TONE_D7 2349
• #define TONE_DS7 2489
• #define TONE_E7 2637
• #define TONE_F7 2794
• #define TONE_FS7 2960
• #define TONE_G7 3136
• #define TONE_GS7 3322

Generated on Mon Oct 17 09:45:43 2011 for SPC by Doxygen

5.10 Tone constants 54

• #define TONE_A7 3520
• #define TONE_AS7 3729
• #define TONE_B7 3951

5.10.1 Detailed Description

Constants for use with the analog output frequency fields.

See also:

DAC0Frequency, DAC1Frequency

5.10.2 Define Documentation

5.10.2.1 #define TONE_A3 220

Third octave A

5.10.2.2 #define TONE_A4 440

Fourth octave A

5.10.2.3 #define TONE_A5 880

Fifth octave A

5.10.2.4 #define TONE_A6 1760

Sixth octave A

5.10.2.5 #define TONE_A7 3520

Seventh octave A

5.10.2.6 #define TONE_AS3 233

Third octave A sharp

5.10.2.7 #define TONE_AS4 466

Fourth octave A sharp

Generated on Mon Oct 17 09:45:43 2011 for SPC by Doxygen

5.10 Tone constants 55

5.10.2.8 #define TONE_AS5 932

Fifth octave A sharp

5.10.2.9 #define TONE_AS6 1865

Sixth octave A sharp

5.10.2.10 #define TONE_AS7 3729

Seventh octave A sharp

5.10.2.11 #define TONE_B3 247

Third octave B

5.10.2.12 #define TONE_B4 494

Fourth octave B

5.10.2.13 #define TONE_B5 988

Fifth octave B

5.10.2.14 #define TONE_B6 1976

Sixth octave B

5.10.2.15 #define TONE_B7 3951

Seventh octave B

5.10.2.16 #define TONE_C4 262

Fourth octave C

5.10.2.17 #define TONE_C5 523

Fifth octave C

Generated on Mon Oct 17 09:45:43 2011 for SPC by Doxygen

5.10 Tone constants 56

5.10.2.18 #define TONE_C6 1047

Sixth octave C

5.10.2.19 #define TONE_C7 2093

Seventh octave C

5.10.2.20 #define TONE_CS4 277

Fourth octave C sharp

5.10.2.21 #define TONE_CS5 554

Fifth octave C sharp

5.10.2.22 #define TONE_CS6 1109

Sixth octave C sharp

5.10.2.23 #define TONE_CS7 2217

Seventh octave C sharp

5.10.2.24 #define TONE_D4 294

Fourth octave D

5.10.2.25 #define TONE_D5 587

Fifth octave D

5.10.2.26 #define TONE_D6 1175

Sixth octave D

5.10.2.27 #define TONE_D7 2349

Seventh octave D

Generated on Mon Oct 17 09:45:43 2011 for SPC by Doxygen

5.10 Tone constants 57

5.10.2.28 #define TONE_DS4 311

Fourth octave D sharp

5.10.2.29 #define TONE_DS5 622

Fifth octave D sharp

5.10.2.30 #define TONE_DS6 1245

Sixth octave D sharp

5.10.2.31 #define TONE_DS7 2489

Seventh octave D sharp

5.10.2.32 #define TONE_E4 330

Fourth octave E

5.10.2.33 #define TONE_E5 659

Fifth octave E

5.10.2.34 #define TONE_E6 1319

Sixth octave E

5.10.2.35 #define TONE_E7 2637

Seventh octave E

5.10.2.36 #define TONE_F4 349

Fourth octave F

5.10.2.37 #define TONE_F5 698

Fifth octave F

Generated on Mon Oct 17 09:45:43 2011 for SPC by Doxygen

5.10 Tone constants 58

5.10.2.38 #define TONE_F6 1397

Sixth octave F

5.10.2.39 #define TONE_F7 2794

Seventh octave F

5.10.2.40 #define TONE_FS4 370

Fourth octave F sharp

5.10.2.41 #define TONE_FS5 740

Fifth octave F sharp

5.10.2.42 #define TONE_FS6 1480

Sixth octave F sharp

5.10.2.43 #define TONE_FS7 2960

Seventh octave F sharp

5.10.2.44 #define TONE_G4 392

Fourth octave G

5.10.2.45 #define TONE_G5 784

Fifth octave G

5.10.2.46 #define TONE_G6 1568

Sixth octave G

5.10.2.47 #define TONE_G7 3136

Seventh octave G

Generated on Mon Oct 17 09:45:43 2011 for SPC by Doxygen

5.11 SPC API 59

5.10.2.48 #define TONE_GS4 415

Fourth octave G sharp

5.10.2.49 #define TONE_GS5 831

Fifth octave G sharp

5.10.2.50 #define TONE_GS6 1661

Sixth octave G sharp

5.10.2.51 #define TONE_GS7 3322

Seventh octave G sharp

5.11 SPC API

SPC API functions.

Functions

• void Wait (long ms)
Wait some milliseconds.

• void Yield (void)
Yield to another task.

• void StopAllTasks (void)
Stop all tasks.

• void Stop (bool bvalue)
Stop the running program.

• void ExitTo (task newTask)
Exit to another task.

• void StartTask (task t)
Start a task.

• unsigned int SizeOf (variant &value)

Generated on Mon Oct 17 09:45:43 2011 for SPC by Doxygen

5.11 SPC API 60

Calculate the size of a variable.

• int read (void)
Read a value from a file.

• int write (const int value)
Write value to file.

• int sqrt (int x)
Compute square root.

• int abs (int num)
Absolute value.

• char sign (int num)
Sign value.

• int close (void)
Close file.

• byte open (const char ∗mode)
Open file.

• char putchar (const char ch)
Write character to debug device.

• int puts (const char ∗str)
Write string to debug device.

• void printf (const char ∗format,...)
Print formatted data to debug device.

• void abort (void)
Abort current process.

• long CurrentTick (void)
Read the current system tick.

• int pop (void)
Pop a value off the stack.

• int push (int value)

Generated on Mon Oct 17 09:45:43 2011 for SPC by Doxygen

5.11 SPC API 61

Push a value onto the stack.

• void RotateLeft (int &value)
Rotate left.

• void RotateRight (int &value)
Rotate right.

• void Run (const int slot)
Run another program.

• int stat (void)
Check log file status.

• void StopProcesses (void)
Stop all processes.

5.11.1 Detailed Description

SPC API functions.

5.11.2 Function Documentation

5.11.2.1 void abort (void) [inline]

Abort current process. Aborts the process with an abnormal program termination. The
function never returns to its caller.

5.11.2.2 int abs (int num) [inline]

Absolute value. Return the absolute value of the value argument. Any scalar type can
be passed into this function.

Parameters:

num The numeric value.

Returns:

The absolute value of num. The return type matches the input type.

Generated on Mon Oct 17 09:45:43 2011 for SPC by Doxygen

5.11 SPC API 62

5.11.2.3 int close (void) [inline]

Close file. Close the log file.

Returns:

The result code.

5.11.2.4 long CurrentTick (void) [inline]

Read the current system tick. This function lets you current system tick count.

Returns:

The current system tick count.

5.11.2.5 void ExitTo (task newTask) [inline]

Exit to another task. Immediately exit the current task and start executing the specified
task.

Parameters:

newTask The task to start executing after exiting the current task.

5.11.2.6 byte open (const char ∗ mode) [inline]

Open file. Opens the log file. The operations that are allowed on the stream and how
these are performed are defined by the mode parameter.

Parameters:

mode The file access mode. Valid values are "r" - opens the existing log file for
reading, "w" - creates a new log file and opens it for writing.

Returns:

The result code.

Generated on Mon Oct 17 09:45:43 2011 for SPC by Doxygen

5.11 SPC API 63

5.11.2.7 int pop (void) [inline]

Pop a value off the stack. Pop a 32-bit integer value off the top of the stack.

Returns:

The value popped off the top of the stack.

5.11.2.8 void printf (const char ∗ format, ...) [inline]

Print formatted data to debug device. Writes to the debug device a sequence of data
formatted as the format argument specifies. After the format parameter, the function
expects a variable number of parameters.

Parameters:

format A constant string literal specifying the desired format.

5.11.2.9 int push (int value) [inline]

Push a value onto the stack. Push a 32-bit integer value onto the top of the stack.

Parameters:

value The value you want to push onto the stack.

Returns:

The value pushed onto the stack.

5.11.2.10 char putchar (const char ch) [inline]

Write character to debug device. Writes a character to the debug device. If there are no
errors, the same character that has been written is returned.

Parameters:

ch The character to be written.

Generated on Mon Oct 17 09:45:43 2011 for SPC by Doxygen

5.11 SPC API 64

Returns:

The character written to the file.

5.11.2.11 int puts (const char ∗ str) [inline]

Write string to debug device. Writes the string to the debug device. The null terminat-
ing character at the end of the string is not written. If there are no errors, a non-negative
value is returned.

Parameters:

str The string of characters to be written.

Returns:

The result code.

5.11.2.12 int read (void) [inline]

Read a value from a file. Read a value from the file associated with the specified handle.
The handle parameter must be a variable. The value parameter must be a variable. The
type of the value parameter determines the number of bytes of data read.

Returns:

The function call result.

5.11.2.13 void RotateLeft (int & value) [inline]

Rotate left. Rotate the specified variable one bit left through carry.

Parameters:

value The value to rotate left one bit.

Generated on Mon Oct 17 09:45:43 2011 for SPC by Doxygen

5.11 SPC API 65

5.11.2.14 void RotateRight (int & value) [inline]

Rotate right. Rotate the specified variable one bit right through carry.

Parameters:

value The value to rotate right one bit.

5.11.2.15 void Run (const int slot) [inline]

Run another program. Run the program in the specified slot. The current program will
terminate.

Parameters:

slot The constant slot number for the program you want to execute. See Program
slot constants.

5.11.2.16 char sign (int num) [inline]

Sign value. Return the sign of the value argument (-1, 0, or 1). Any scalar type can be
passed into this function.

Parameters:

num The numeric value for which to calculate its sign value.

Returns:

-1 if the parameter is negative, 0 if the parameter is zero, or 1 if the parameter is
positive.

5.11.2.17 unsigned int SizeOf (variant & value) [inline]

Calculate the size of a variable. Calculate the number of bytes required to store the
contents of the variable passed into the function.

Generated on Mon Oct 17 09:45:43 2011 for SPC by Doxygen

5.11 SPC API 66

Parameters:

value The variable.

Returns:

The number of bytes occupied by the variable.

5.11.2.18 int sqrt (int x) [inline]

Compute square root. Computes the square root of x.

Parameters:

x integer value.

Returns:

Square root of x.

5.11.2.19 void StartTask (task t) [inline]

Start a task. Start the specified task.

Parameters:

t The task to start.

5.11.2.20 int stat (void) [inline]

Check log file status. Check the status of the system log file.

Returns:

The log file status. See Log status constants.

Generated on Mon Oct 17 09:45:43 2011 for SPC by Doxygen

5.11 SPC API 67

5.11.2.21 void Stop (bool bvalue) [inline]

Stop the running program. Stop the running program if bvalue is true. This will halt
the program completely, so any code following this command will be ignored.

Parameters:

bvalue If this value is true the program will stop executing.

5.11.2.22 void StopAllTasks (void) [inline]

Stop all tasks. Stop all currently running tasks. This will halt the program completely,
so any code following this command will be ignored.

5.11.2.23 void StopProcesses (void) [inline]

Stop all processes. Stop all running tasks except for the main task.

5.11.2.24 void Wait (long ms) [inline]

Wait some milliseconds. Make a task sleep for specified amount of time (in 1000ths of
a second).

Parameters:

ms The number of milliseconds to sleep.

5.11.2.25 int write (const int value) [inline]

Write value to file. Write a value to the file associated with the specified handle. The
handle parameter must be a variable. The value parameter must be a constant, a con-
stant expression, or a variable. The type of the value parameter determines the number
of bytes of data written.

Parameters:

value The value to write to the file.

Generated on Mon Oct 17 09:45:43 2011 for SPC by Doxygen

5.12 ctype API 68

Returns:

The function call result.

5.11.2.26 void Yield (void) [inline]

Yield to another task. Make a task yield to another concurrently running task.

5.12 ctype API

Standard C ctype API functions.

Functions

• int isupper (int c)
Check if character is uppercase letter.

• int islower (int c)
Check if character is lowercase letter.

• int isalpha (int c)
Check if character is alphabetic.

• int isdigit (int c)
Check if character is decimal digit.

• int isalnum (int c)
Check if character is alphanumeric.

• int isspace (int c)
Check if character is a white-space.

• int iscntrl (int c)
Check if character is a control character.

• int isprint (int c)
Check if character is printable.

• int isgraph (int c)
Check if character has graphical representation.

Generated on Mon Oct 17 09:45:43 2011 for SPC by Doxygen

5.12 ctype API 69

• int ispunct (int c)
Check if character is a punctuation.

• int isxdigit (int c)
Check if character is hexadecimal digit.

• int toupper (int c)
Convert lowercase letter to uppercase.

• int tolower (int c)
Convert uppercase letter to lowercase.

5.12.1 Detailed Description

Standard C ctype API functions.

5.12.2 Function Documentation

5.12.2.1 int isalnum (int c) [inline]

Check if character is alphanumeric. Checks if parameter c is either a decimal digit or
an uppercase or lowercase letter. The result is true if either isalpha or isdigit would also
return true.

Parameters:

c Character to be checked.

Returns:

Returns a non-zero value (true) if c is either a digit or a letter, otherwise it returns
0 (false).

5.12.2.2 int isalpha (int c) [inline]

Check if character is alphabetic. Checks if parameter c is either an uppercase or lower-
case letter.

Generated on Mon Oct 17 09:45:43 2011 for SPC by Doxygen

5.12 ctype API 70

Parameters:

c Character to be checked.

Returns:

Returns a non-zero value (true) if c is an alphabetic letter, otherwise it returns 0
(false).

5.12.2.3 int iscntrl (int c) [inline]

Check if character is a control character. Checks if parameter c is a control character.

Parameters:

c Character to be checked.

Returns:

Returns a non-zero value (true) if c is a control character, otherwise it returns 0
(false).

5.12.2.4 int isdigit (int c) [inline]

Check if character is decimal digit. Checks if parameter c is a decimal digit character.

Parameters:

c Character to be checked.

Returns:

Returns a non-zero value (true) if c is a decimal digit, otherwise it returns 0 (false).

5.12.2.5 int isgraph (int c) [inline]

Check if character has graphical representation. Checks if parameter c is a character
with a graphical representation.

Parameters:

c Character to be checked.

Generated on Mon Oct 17 09:45:43 2011 for SPC by Doxygen

5.12 ctype API 71

Returns:

Returns a non-zero value (true) if c has a graphical representation, otherwise it
returns 0 (false).

5.12.2.6 int islower (int c) [inline]

Check if character is lowercase letter. Checks if parameter c is an lowercase alphabetic
letter.

Parameters:

c Character to be checked.

Returns:

Returns a non-zero value (true) if c is an lowercase alphabetic letter, otherwise it
returns 0 (false).

5.12.2.7 int isprint (int c) [inline]

Check if character is printable. Checks if parameter c is a printable character (i.e., not
a control character).

Parameters:

c Character to be checked.

Returns:

Returns a non-zero value (true) if c is a printable character, otherwise it returns 0
(false).

5.12.2.8 int ispunct (int c) [inline]

Check if character is a punctuation. Checks if parameter c is a punctuation character.

Parameters:

c Character to be checked.

Generated on Mon Oct 17 09:45:43 2011 for SPC by Doxygen

5.12 ctype API 72

Returns:

Returns a non-zero value (true) if c is a punctuation character, otherwise it returns
0 (false).

5.12.2.9 int isspace (int c) [inline]

Check if character is a white-space. Checks if parameter c is a white-space character.

Parameters:

c Character to be checked.

Returns:

Returns a non-zero value (true) if c is a white-space character, otherwise it returns
0 (false).

5.12.2.10 int isupper (int c) [inline]

Check if character is uppercase letter. Checks if parameter c is an uppercase alphabetic
letter.

Parameters:

c Character to be checked.

Returns:

Returns a non-zero value (true) if c is an uppercase alphabetic letter, otherwise it
returns 0 (false).

5.12.2.11 int isxdigit (int c) [inline]

Check if character is hexadecimal digit. Checks if parameter c is a hexadecimal digit
character.

Parameters:

c Character to be checked.

Generated on Mon Oct 17 09:45:43 2011 for SPC by Doxygen

6 File Documentation 73

Returns:

Returns a non-zero value (true) if c is a hexadecimal digit character, otherwise it
returns 0 (false).

5.12.2.12 int tolower (int c) [inline]

Convert uppercase letter to lowercase. Converts parameter c to its lowercase equivalent
if c is an uppercase letter and has a lowercase equivalent. If no such conversion is
possible, the value returned is c unchanged.

Parameters:

c Uppercase letter character to be converted.

Returns:

The lowercase equivalent to c, if such value exists, or c (unchanged) otherwise..

5.12.2.13 int toupper (int c) [inline]

Convert lowercase letter to uppercase. Converts parameter c to its uppercase equivalent
if c is a lowercase letter and has an uppercase equivalent. If no such conversion is
possible, the value returned is c unchanged.

Parameters:

c Lowercase letter character to be converted.

Returns:

The uppercase equivalent to c, if such value exists, or c (unchanged) otherwise..

6 File Documentation

6.1 SPCAPIDocs.h File Reference

Additional documentation for the SPC API. #include "SPCDefs.h"

Generated on Mon Oct 17 09:45:43 2011 for SPC by Doxygen

6.2 SPCDefs.h File Reference 74

6.1.1 Detailed Description

Additional documentation for the SPC API. SPCAPIDocs.h contains additional docu-
mentation for the SPC API

License:

The contents of this file are subject to the Mozilla Public License Version 1.1 (the
"License"); you may not use this file except in compliance with the License. You may
obtain a copy of the License at http://www.mozilla.org/MPL/

Software distributed under the License is distributed on an "AS IS" basis, WITHOUT
WARRANTY OF ANY KIND, either express or implied. See the License for the
specific language governing rights and limitations under the License.

The Initial Developer of this code is John Hansen. Portions created by John Hansen
are Copyright (C) 2009-2011 John Hansen. All Rights Reserved.

--

Author:

John Hansen (bricxcc_at_comcast.net)

Date:

2011-10-10

Version:

2

6.2 SPCDefs.h File Reference

Constants, macros, and API functions for SPC. #include "spmem.h"

Defines

• #define TRUE 1
• #define FALSE 0
• #define SERIAL_BUFFER_SIZE 255
• #define CHAR_BIT 32
• #define LONG_MIN -2147483648
• #define SCHAR_MIN -2147483648
• #define INT_MIN -2147483648
• #define CHAR_MIN -2147483648
• #define LONG_MAX 2147483647
• #define SCHAR_MAX 2147483647

Generated on Mon Oct 17 09:45:43 2011 for SPC by Doxygen

http://www.mozilla.org/MPL/

6.2 SPCDefs.h File Reference 75

• #define INT_MAX 2147483647
• #define CHAR_MAX 2147483647
• #define DAC_MODE_DCOUT 0
• #define DAC_MODE_SINEWAVE 1
• #define DAC_MODE_SQUAREWAVE 2
• #define DAC_MODE_SAWPOSWAVE 3
• #define DAC_MODE_SAWNEGWAVE 4
• #define DAC_MODE_TRIANGLEWAVE 5
• #define DAC_MODE_PWMVOLTAGE 6
• #define LED_BLUE 0x02
• #define LED_RED 0x01
• #define DIGI_PIN0 0x01
• #define DIGI_PIN1 0x02
• #define DIGI_PIN2 0x04
• #define DIGI_PIN3 0x08
• #define DIGI_PIN4 0x10
• #define DIGI_PIN5 0x20
• #define DIGI_PIN6 0x40
• #define DIGI_PIN7 0x80
• #define STROBE_S0 0x01
• #define STROBE_S1 0x02
• #define STROBE_S2 0x04
• #define STROBE_S3 0x08
• #define STROBE_READ 0x10
• #define STROBE_WRITE 0x20
• #define SLOT1 0
• #define SLOT2 1
• #define SLOT3 2
• #define SLOT4 3
• #define SLOT5 4
• #define SLOT6 5
• #define SLOT7 6
• #define LOG_STATUS_OPEN 2
• #define LOG_STATUS_BUSY 1
• #define LOG_STATUS_CLOSED 0
• #define MS_1 1
• #define MS_2 2
• #define MS_3 3
• #define MS_4 4
• #define MS_5 5
• #define MS_6 6
• #define MS_7 7
• #define MS_8 8

Generated on Mon Oct 17 09:45:43 2011 for SPC by Doxygen

6.2 SPCDefs.h File Reference 76

• #define MS_9 9
• #define MS_10 10
• #define MS_20 20
• #define MS_30 30
• #define MS_40 40
• #define MS_50 50
• #define MS_60 60
• #define MS_70 70
• #define MS_80 80
• #define MS_90 90
• #define MS_100 100
• #define MS_150 150
• #define MS_200 200
• #define MS_250 250
• #define MS_300 300
• #define MS_350 350
• #define MS_400 400
• #define MS_450 450
• #define MS_500 500
• #define MS_600 600
• #define MS_700 700
• #define MS_800 800
• #define MS_900 900
• #define SEC_1 1000
• #define SEC_2 2000
• #define SEC_3 3000
• #define SEC_4 4000
• #define SEC_5 5000
• #define SEC_6 6000
• #define SEC_7 7000
• #define SEC_8 8000
• #define SEC_9 9000
• #define SEC_10 10000
• #define SEC_15 15000
• #define SEC_20 20000
• #define SEC_30 30000
• #define MIN_1 60000
• #define TONE_A3 220
• #define TONE_AS3 233
• #define TONE_B3 247
• #define TONE_C4 262
• #define TONE_CS4 277
• #define TONE_D4 294

Generated on Mon Oct 17 09:45:43 2011 for SPC by Doxygen

6.2 SPCDefs.h File Reference 77

• #define TONE_DS4 311
• #define TONE_E4 330
• #define TONE_F4 349
• #define TONE_FS4 370
• #define TONE_G4 392
• #define TONE_GS4 415
• #define TONE_A4 440
• #define TONE_AS4 466
• #define TONE_B4 494
• #define TONE_C5 523
• #define TONE_CS5 554
• #define TONE_D5 587
• #define TONE_DS5 622
• #define TONE_E5 659
• #define TONE_F5 698
• #define TONE_FS5 740
• #define TONE_G5 784
• #define TONE_GS5 831
• #define TONE_A5 880
• #define TONE_AS5 932
• #define TONE_B5 988
• #define TONE_C6 1047
• #define TONE_CS6 1109
• #define TONE_D6 1175
• #define TONE_DS6 1245
• #define TONE_E6 1319
• #define TONE_F6 1397
• #define TONE_FS6 1480
• #define TONE_G6 1568
• #define TONE_GS6 1661
• #define TONE_A6 1760
• #define TONE_AS6 1865
• #define TONE_B6 1976
• #define TONE_C7 2093
• #define TONE_CS7 2217
• #define TONE_D7 2349
• #define TONE_DS7 2489
• #define TONE_E7 2637
• #define TONE_F7 2794
• #define TONE_FS7 2960
• #define TONE_G7 3136
• #define TONE_GS7 3322
• #define TONE_A7 3520
• #define TONE_AS7 3729
• #define TONE_B7 3951

Generated on Mon Oct 17 09:45:43 2011 for SPC by Doxygen

6.2 SPCDefs.h File Reference 78

Functions

• void Wait (long ms)
Wait some milliseconds.

• void Yield (void)
Yield to another task.

• void StopAllTasks (void)
Stop all tasks.

• void Stop (bool bvalue)
Stop the running program.

• void ExitTo (task newTask)
Exit to another task.

• void StartTask (task t)
Start a task.

• unsigned int SizeOf (variant &value)
Calculate the size of a variable.

• int read (void)
Read a value from a file.

• int write (const int value)
Write value to file.

• int sqrt (int x)
Compute square root.

• int abs (int num)
Absolute value.

• char sign (int num)
Sign value.

• int close (void)
Close file.

• byte open (const char ∗mode)
Open file.

Generated on Mon Oct 17 09:45:43 2011 for SPC by Doxygen

6.2 SPCDefs.h File Reference 79

• char putchar (const char ch)
Write character to debug device.

• int puts (const char ∗str)
Write string to debug device.

• void printf (const char ∗format,...)
Print formatted data to debug device.

• void abort (void)
Abort current process.

• long CurrentTick (void)
Read the current system tick.

• int pop (void)
Pop a value off the stack.

• int push (int value)
Push a value onto the stack.

• void RotateLeft (int &value)
Rotate left.

• void RotateRight (int &value)
Rotate right.

• void Run (const int slot)
Run another program.

• int stat (void)
Check log file status.

• void StopProcesses (void)
Stop all processes.

• int isupper (int c)
Check if character is uppercase letter.

• int islower (int c)
Check if character is lowercase letter.

Generated on Mon Oct 17 09:45:43 2011 for SPC by Doxygen

6.2 SPCDefs.h File Reference 80

• int isalpha (int c)
Check if character is alphabetic.

• int isdigit (int c)
Check if character is decimal digit.

• int isalnum (int c)
Check if character is alphanumeric.

• int isspace (int c)
Check if character is a white-space.

• int iscntrl (int c)
Check if character is a control character.

• int isprint (int c)
Check if character is printable.

• int isgraph (int c)
Check if character has graphical representation.

• int ispunct (int c)
Check if character is a punctuation.

• int isxdigit (int c)
Check if character is hexadecimal digit.

• int toupper (int c)
Convert lowercase letter to uppercase.

• int tolower (int c)
Convert uppercase letter to lowercase.

6.2.1 Detailed Description

Constants, macros, and API functions for SPC. SPCDefs.h contains declarations for
the SPC API resources

License:

Generated on Mon Oct 17 09:45:43 2011 for SPC by Doxygen

6.2 SPCDefs.h File Reference 81

The contents of this file are subject to the Mozilla Public License Version 1.1 (the
"License"); you may not use this file except in compliance with the License. You may
obtain a copy of the License at http://www.mozilla.org/MPL/

Software distributed under the License is distributed on an "AS IS" basis, WITHOUT
WARRANTY OF ANY KIND, either express or implied. See the License for the
specific language governing rights and limitations under the License.

The Initial Developer of this code is John Hansen. Portions created by John Hansen
are Copyright (C) 2009-2011 John Hansen. All Rights Reserved.

--

Author:

John Hansen (bricxcc_at_comcast.net)

Date:

2011-08-11

Version:

1

6.2.2 Define Documentation

6.2.2.1 #define CHAR_BIT 32

The number of bits in the char type

6.2.2.2 #define CHAR_MAX 2147483647

The maximum value of the char type

6.2.2.3 #define CHAR_MIN -2147483648

The minimum value of the char type

6.2.2.4 #define DAC_MODE_DCOUT 0

Steady (DC) voltage output.

6.2.2.5 #define DAC_MODE_PWMVOLTAGE 6

PWM square wave output.

Generated on Mon Oct 17 09:45:43 2011 for SPC by Doxygen

http://www.mozilla.org/MPL/

6.2 SPCDefs.h File Reference 82

6.2.2.6 #define DAC_MODE_SAWNEGWAVE 4

Negative going sawtooth output.

6.2.2.7 #define DAC_MODE_SAWPOSWAVE 3

Positive going sawtooth output.

6.2.2.8 #define DAC_MODE_SINEWAVE 1

Sine wave output.

6.2.2.9 #define DAC_MODE_SQUAREWAVE 2

Square wave output.

6.2.2.10 #define DAC_MODE_TRIANGLEWAVE 5

Triangle wave output.

6.2.2.11 #define DIGI_PIN0 0x01

Access digital pin 0 (B0)

6.2.2.12 #define DIGI_PIN1 0x02

Access digital pin 1 (B1)

6.2.2.13 #define DIGI_PIN2 0x04

Access digital pin 2 (B2)

6.2.2.14 #define DIGI_PIN3 0x08

Access digital pin 3 (B3)

6.2.2.15 #define DIGI_PIN4 0x10

Access digital pin 4 (B4)

Generated on Mon Oct 17 09:45:43 2011 for SPC by Doxygen

6.2 SPCDefs.h File Reference 83

6.2.2.16 #define DIGI_PIN5 0x20

Access digital pin 5 (B5)

6.2.2.17 #define DIGI_PIN6 0x40

Access digital pin 6 (B6)

6.2.2.18 #define DIGI_PIN7 0x80

Access digital pin 7 (B7)

6.2.2.19 #define FALSE 0

A false value

6.2.2.20 #define INT_MAX 2147483647

The maximum value of the int type

6.2.2.21 #define INT_MIN -2147483648

The minimum value of the int type

6.2.2.22 #define LED_BLUE 0x02

Turn on the blue onboard LED.

6.2.2.23 #define LED_RED 0x01

Turn on the red onboard LED.

6.2.2.24 #define LOG_STATUS_BUSY 1

Log file is busy.

6.2.2.25 #define LOG_STATUS_CLOSED 0

Log file is closed.

Generated on Mon Oct 17 09:45:43 2011 for SPC by Doxygen

6.2 SPCDefs.h File Reference 84

6.2.2.26 #define LOG_STATUS_OPEN 2

Log file is open.

6.2.2.27 #define LONG_MAX 2147483647

The maximum value of the long type

6.2.2.28 #define LONG_MIN -2147483648

The minimum value of the long type

6.2.2.29 #define MIN_1 60000

1 minute

6.2.2.30 #define MS_1 1

1 millisecond

6.2.2.31 #define MS_10 10

10 milliseconds

6.2.2.32 #define MS_100 100

100 milliseconds

6.2.2.33 #define MS_150 150

150 milliseconds

6.2.2.34 #define MS_2 2

2 milliseconds

6.2.2.35 #define MS_20 20

20 milliseconds

Generated on Mon Oct 17 09:45:43 2011 for SPC by Doxygen

6.2 SPCDefs.h File Reference 85

6.2.2.36 #define MS_200 200

200 milliseconds

6.2.2.37 #define MS_250 250

250 milliseconds

6.2.2.38 #define MS_3 3

3 milliseconds

6.2.2.39 #define MS_30 30

30 milliseconds

6.2.2.40 #define MS_300 300

300 milliseconds

6.2.2.41 #define MS_350 350

350 milliseconds

6.2.2.42 #define MS_4 4

4 milliseconds

6.2.2.43 #define MS_40 40

40 milliseconds

6.2.2.44 #define MS_400 400

400 milliseconds

6.2.2.45 #define MS_450 450

450 milliseconds

Generated on Mon Oct 17 09:45:43 2011 for SPC by Doxygen

6.2 SPCDefs.h File Reference 86

6.2.2.46 #define MS_5 5

5 milliseconds

6.2.2.47 #define MS_50 50

50 milliseconds

6.2.2.48 #define MS_500 500

500 milliseconds

6.2.2.49 #define MS_6 6

6 milliseconds

6.2.2.50 #define MS_60 60

60 milliseconds

6.2.2.51 #define MS_600 600

600 milliseconds

6.2.2.52 #define MS_7 7

7 milliseconds

6.2.2.53 #define MS_70 70

70 milliseconds

6.2.2.54 #define MS_700 700

700 milliseconds

6.2.2.55 #define MS_8 8

8 milliseconds

Generated on Mon Oct 17 09:45:43 2011 for SPC by Doxygen

6.2 SPCDefs.h File Reference 87

6.2.2.56 #define MS_80 80

80 milliseconds

6.2.2.57 #define MS_800 800

800 milliseconds

6.2.2.58 #define MS_9 9

9 milliseconds

6.2.2.59 #define MS_90 90

90 milliseconds

6.2.2.60 #define MS_900 900

900 milliseconds

6.2.2.61 #define SCHAR_MAX 2147483647

The maximum value of the signed char type

6.2.2.62 #define SCHAR_MIN -2147483648

The minimum value of the signed char type

6.2.2.63 #define SEC_1 1000

1 second

6.2.2.64 #define SEC_10 10000

10 seconds

6.2.2.65 #define SEC_15 15000

15 seconds

Generated on Mon Oct 17 09:45:43 2011 for SPC by Doxygen

6.2 SPCDefs.h File Reference 88

6.2.2.66 #define SEC_2 2000

2 seconds

6.2.2.67 #define SEC_20 20000

20 seconds

6.2.2.68 #define SEC_3 3000

3 seconds

6.2.2.69 #define SEC_30 30000

30 seconds

6.2.2.70 #define SEC_4 4000

4 seconds

6.2.2.71 #define SEC_5 5000

5 seconds

6.2.2.72 #define SEC_6 6000

6 seconds

6.2.2.73 #define SEC_7 7000

7 seconds

6.2.2.74 #define SEC_8 8000

8 seconds

6.2.2.75 #define SEC_9 9000

9 seconds

Generated on Mon Oct 17 09:45:43 2011 for SPC by Doxygen

6.2 SPCDefs.h File Reference 89

6.2.2.76 #define SERIAL_BUFFER_SIZE 255

Serial port receive and send buffer size

6.2.2.77 #define SLOT1 0

Program slot 1.

6.2.2.78 #define SLOT2 1

Program slot 2.

6.2.2.79 #define SLOT3 2

Program slot 3.

6.2.2.80 #define SLOT4 3

Program slot 4.

6.2.2.81 #define SLOT5 4

Program slot 5.

6.2.2.82 #define SLOT6 5

Program slot 6.

6.2.2.83 #define SLOT7 6

Program slot 7.

6.2.2.84 #define STROBE_READ 0x10

Access read pin (RD)

6.2.2.85 #define STROBE_S0 0x01

Access strobe 0 pin (S0)

Generated on Mon Oct 17 09:45:43 2011 for SPC by Doxygen

6.2 SPCDefs.h File Reference 90

6.2.2.86 #define STROBE_S1 0x02

Access strobe 1 pin (S1)

6.2.2.87 #define STROBE_S2 0x04

Access strobe 2 pin (S2)

6.2.2.88 #define STROBE_S3 0x08

Access strobe 3 pin (S3)

6.2.2.89 #define STROBE_WRITE 0x20

Access write pin (WR)

6.2.2.90 #define TONE_A3 220

Third octave A

6.2.2.91 #define TONE_A4 440

Fourth octave A

6.2.2.92 #define TONE_A5 880

Fifth octave A

6.2.2.93 #define TONE_A6 1760

Sixth octave A

6.2.2.94 #define TONE_A7 3520

Seventh octave A

6.2.2.95 #define TONE_AS3 233

Third octave A sharp

Generated on Mon Oct 17 09:45:43 2011 for SPC by Doxygen

6.2 SPCDefs.h File Reference 91

6.2.2.96 #define TONE_AS4 466

Fourth octave A sharp

6.2.2.97 #define TONE_AS5 932

Fifth octave A sharp

6.2.2.98 #define TONE_AS6 1865

Sixth octave A sharp

6.2.2.99 #define TONE_AS7 3729

Seventh octave A sharp

6.2.2.100 #define TONE_B3 247

Third octave B

6.2.2.101 #define TONE_B4 494

Fourth octave B

6.2.2.102 #define TONE_B5 988

Fifth octave B

6.2.2.103 #define TONE_B6 1976

Sixth octave B

6.2.2.104 #define TONE_B7 3951

Seventh octave B

6.2.2.105 #define TONE_C4 262

Fourth octave C

Generated on Mon Oct 17 09:45:43 2011 for SPC by Doxygen

6.2 SPCDefs.h File Reference 92

6.2.2.106 #define TONE_C5 523

Fifth octave C

6.2.2.107 #define TONE_C6 1047

Sixth octave C

6.2.2.108 #define TONE_C7 2093

Seventh octave C

6.2.2.109 #define TONE_CS4 277

Fourth octave C sharp

6.2.2.110 #define TONE_CS5 554

Fifth octave C sharp

6.2.2.111 #define TONE_CS6 1109

Sixth octave C sharp

6.2.2.112 #define TONE_CS7 2217

Seventh octave C sharp

6.2.2.113 #define TONE_D4 294

Fourth octave D

6.2.2.114 #define TONE_D5 587

Fifth octave D

6.2.2.115 #define TONE_D6 1175

Sixth octave D

Generated on Mon Oct 17 09:45:43 2011 for SPC by Doxygen

6.2 SPCDefs.h File Reference 93

6.2.2.116 #define TONE_D7 2349

Seventh octave D

6.2.2.117 #define TONE_DS4 311

Fourth octave D sharp

6.2.2.118 #define TONE_DS5 622

Fifth octave D sharp

6.2.2.119 #define TONE_DS6 1245

Sixth octave D sharp

6.2.2.120 #define TONE_DS7 2489

Seventh octave D sharp

6.2.2.121 #define TONE_E4 330

Fourth octave E

6.2.2.122 #define TONE_E5 659

Fifth octave E

6.2.2.123 #define TONE_E6 1319

Sixth octave E

6.2.2.124 #define TONE_E7 2637

Seventh octave E

6.2.2.125 #define TONE_F4 349

Fourth octave F

Generated on Mon Oct 17 09:45:43 2011 for SPC by Doxygen

6.2 SPCDefs.h File Reference 94

6.2.2.126 #define TONE_F5 698

Fifth octave F

6.2.2.127 #define TONE_F6 1397

Sixth octave F

6.2.2.128 #define TONE_F7 2794

Seventh octave F

6.2.2.129 #define TONE_FS4 370

Fourth octave F sharp

6.2.2.130 #define TONE_FS5 740

Fifth octave F sharp

6.2.2.131 #define TONE_FS6 1480

Sixth octave F sharp

6.2.2.132 #define TONE_FS7 2960

Seventh octave F sharp

6.2.2.133 #define TONE_G4 392

Fourth octave G

6.2.2.134 #define TONE_G5 784

Fifth octave G

6.2.2.135 #define TONE_G6 1568

Sixth octave G

Generated on Mon Oct 17 09:45:43 2011 for SPC by Doxygen

6.2 SPCDefs.h File Reference 95

6.2.2.136 #define TONE_G7 3136

Seventh octave G

6.2.2.137 #define TONE_GS4 415

Fourth octave G sharp

6.2.2.138 #define TONE_GS5 831

Fifth octave G sharp

6.2.2.139 #define TONE_GS6 1661

Sixth octave G sharp

6.2.2.140 #define TONE_GS7 3322

Seventh octave G sharp

6.2.2.141 #define TRUE 1

A true value

6.2.3 Function Documentation

6.2.3.1 void abort (void) [inline]

Abort current process. Aborts the process with an abnormal program termination. The
function never returns to its caller.

6.2.3.2 int abs (int num) [inline]

Absolute value. Return the absolute value of the value argument. Any scalar type can
be passed into this function.

Parameters:

num The numeric value.

Generated on Mon Oct 17 09:45:43 2011 for SPC by Doxygen

6.2 SPCDefs.h File Reference 96

Returns:

The absolute value of num. The return type matches the input type.

6.2.3.3 int close (void) [inline]

Close file. Close the log file.

Returns:

The result code.

6.2.3.4 long CurrentTick (void) [inline]

Read the current system tick. This function lets you current system tick count.

Returns:

The current system tick count.

6.2.3.5 void ExitTo (task newTask) [inline]

Exit to another task. Immediately exit the current task and start executing the specified
task.

Parameters:

newTask The task to start executing after exiting the current task.

6.2.3.6 int isalnum (int c) [inline]

Check if character is alphanumeric. Checks if parameter c is either a decimal digit or
an uppercase or lowercase letter. The result is true if either isalpha or isdigit would also
return true.

Parameters:

c Character to be checked.

Generated on Mon Oct 17 09:45:43 2011 for SPC by Doxygen

6.2 SPCDefs.h File Reference 97

Returns:

Returns a non-zero value (true) if c is either a digit or a letter, otherwise it returns
0 (false).

6.2.3.7 int isalpha (int c) [inline]

Check if character is alphabetic. Checks if parameter c is either an uppercase or lower-
case letter.

Parameters:

c Character to be checked.

Returns:

Returns a non-zero value (true) if c is an alphabetic letter, otherwise it returns 0
(false).

6.2.3.8 int iscntrl (int c) [inline]

Check if character is a control character. Checks if parameter c is a control character.

Parameters:

c Character to be checked.

Returns:

Returns a non-zero value (true) if c is a control character, otherwise it returns 0
(false).

6.2.3.9 int isdigit (int c) [inline]

Check if character is decimal digit. Checks if parameter c is a decimal digit character.

Parameters:

c Character to be checked.

Returns:

Returns a non-zero value (true) if c is a decimal digit, otherwise it returns 0 (false).

Generated on Mon Oct 17 09:45:43 2011 for SPC by Doxygen

6.2 SPCDefs.h File Reference 98

6.2.3.10 int isgraph (int c) [inline]

Check if character has graphical representation. Checks if parameter c is a character
with a graphical representation.

Parameters:

c Character to be checked.

Returns:

Returns a non-zero value (true) if c has a graphical representation, otherwise it
returns 0 (false).

6.2.3.11 int islower (int c) [inline]

Check if character is lowercase letter. Checks if parameter c is an lowercase alphabetic
letter.

Parameters:

c Character to be checked.

Returns:

Returns a non-zero value (true) if c is an lowercase alphabetic letter, otherwise it
returns 0 (false).

6.2.3.12 int isprint (int c) [inline]

Check if character is printable. Checks if parameter c is a printable character (i.e., not
a control character).

Parameters:

c Character to be checked.

Returns:

Returns a non-zero value (true) if c is a printable character, otherwise it returns 0
(false).

Generated on Mon Oct 17 09:45:43 2011 for SPC by Doxygen

6.2 SPCDefs.h File Reference 99

6.2.3.13 int ispunct (int c) [inline]

Check if character is a punctuation. Checks if parameter c is a punctuation character.

Parameters:

c Character to be checked.

Returns:

Returns a non-zero value (true) if c is a punctuation character, otherwise it returns
0 (false).

6.2.3.14 int isspace (int c) [inline]

Check if character is a white-space. Checks if parameter c is a white-space character.

Parameters:

c Character to be checked.

Returns:

Returns a non-zero value (true) if c is a white-space character, otherwise it returns
0 (false).

6.2.3.15 int isupper (int c) [inline]

Check if character is uppercase letter. Checks if parameter c is an uppercase alphabetic
letter.

Parameters:

c Character to be checked.

Returns:

Returns a non-zero value (true) if c is an uppercase alphabetic letter, otherwise it
returns 0 (false).

Generated on Mon Oct 17 09:45:43 2011 for SPC by Doxygen

6.2 SPCDefs.h File Reference 100

6.2.3.16 int isxdigit (int c) [inline]

Check if character is hexadecimal digit. Checks if parameter c is a hexadecimal digit
character.

Parameters:

c Character to be checked.

Returns:

Returns a non-zero value (true) if c is a hexadecimal digit character, otherwise it
returns 0 (false).

6.2.3.17 byte open (const char ∗ mode) [inline]

Open file. Opens the log file. The operations that are allowed on the stream and how
these are performed are defined by the mode parameter.

Parameters:

mode The file access mode. Valid values are "r" - opens the existing log file for
reading, "w" - creates a new log file and opens it for writing.

Returns:

The result code.

6.2.3.18 int pop (void) [inline]

Pop a value off the stack. Pop a 32-bit integer value off the top of the stack.

Returns:

The value popped off the top of the stack.

6.2.3.19 void printf (const char ∗ format, ...) [inline]

Generated on Mon Oct 17 09:45:43 2011 for SPC by Doxygen

6.2 SPCDefs.h File Reference 101

Print formatted data to debug device. Writes to the debug device a sequence of data
formatted as the format argument specifies. After the format parameter, the function
expects a variable number of parameters.

Parameters:

format A constant string literal specifying the desired format.

6.2.3.20 int push (int value) [inline]

Push a value onto the stack. Push a 32-bit integer value onto the top of the stack.

Parameters:

value The value you want to push onto the stack.

Returns:

The value pushed onto the stack.

6.2.3.21 char putchar (const char ch) [inline]

Write character to debug device. Writes a character to the debug device. If there are no
errors, the same character that has been written is returned.

Parameters:

ch The character to be written.

Returns:

The character written to the file.

6.2.3.22 int puts (const char ∗ str) [inline]

Write string to debug device. Writes the string to the debug device. The null terminat-
ing character at the end of the string is not written. If there are no errors, a non-negative
value is returned.

Generated on Mon Oct 17 09:45:43 2011 for SPC by Doxygen

6.2 SPCDefs.h File Reference 102

Parameters:

str The string of characters to be written.

Returns:

The result code.

6.2.3.23 int read (void) [inline]

Read a value from a file. Read a value from the file associated with the specified handle.
The handle parameter must be a variable. The value parameter must be a variable. The
type of the value parameter determines the number of bytes of data read.

Returns:

The function call result.

6.2.3.24 void RotateLeft (int & value) [inline]

Rotate left. Rotate the specified variable one bit left through carry.

Parameters:

value The value to rotate left one bit.

6.2.3.25 void RotateRight (int & value) [inline]

Rotate right. Rotate the specified variable one bit right through carry.

Parameters:

value The value to rotate right one bit.

6.2.3.26 void Run (const int slot) [inline]

Run another program. Run the program in the specified slot. The current program will
terminate.

Generated on Mon Oct 17 09:45:43 2011 for SPC by Doxygen

6.2 SPCDefs.h File Reference 103

Parameters:

slot The constant slot number for the program you want to execute. See Program
slot constants.

6.2.3.27 char sign (int num) [inline]

Sign value. Return the sign of the value argument (-1, 0, or 1). Any scalar type can be
passed into this function.

Parameters:

num The numeric value for which to calculate its sign value.

Returns:

-1 if the parameter is negative, 0 if the parameter is zero, or 1 if the parameter is
positive.

6.2.3.28 unsigned int SizeOf (variant & value) [inline]

Calculate the size of a variable. Calculate the number of bytes required to store the
contents of the variable passed into the function.

Parameters:

value The variable.

Returns:

The number of bytes occupied by the variable.

6.2.3.29 int sqrt (int x) [inline]

Compute square root. Computes the square root of x.

Parameters:

x integer value.

Returns:

Square root of x.

Generated on Mon Oct 17 09:45:43 2011 for SPC by Doxygen

6.2 SPCDefs.h File Reference 104

6.2.3.30 void StartTask (task t) [inline]

Start a task. Start the specified task.

Parameters:

t The task to start.

6.2.3.31 int stat (void) [inline]

Check log file status. Check the status of the system log file.

Returns:

The log file status. See Log status constants.

6.2.3.32 void Stop (bool bvalue) [inline]

Stop the running program. Stop the running program if bvalue is true. This will halt
the program completely, so any code following this command will be ignored.

Parameters:

bvalue If this value is true the program will stop executing.

6.2.3.33 void StopAllTasks (void) [inline]

Stop all tasks. Stop all currently running tasks. This will halt the program completely,
so any code following this command will be ignored.

6.2.3.34 void StopProcesses (void) [inline]

Stop all processes. Stop all running tasks except for the main task.

Generated on Mon Oct 17 09:45:43 2011 for SPC by Doxygen

6.2 SPCDefs.h File Reference 105

6.2.3.35 int tolower (int c) [inline]

Convert uppercase letter to lowercase. Converts parameter c to its lowercase equivalent
if c is an uppercase letter and has a lowercase equivalent. If no such conversion is
possible, the value returned is c unchanged.

Parameters:

c Uppercase letter character to be converted.

Returns:

The lowercase equivalent to c, if such value exists, or c (unchanged) otherwise..

6.2.3.36 int toupper (int c) [inline]

Convert lowercase letter to uppercase. Converts parameter c to its uppercase equivalent
if c is a lowercase letter and has an uppercase equivalent. If no such conversion is
possible, the value returned is c unchanged.

Parameters:

c Lowercase letter character to be converted.

Returns:

The uppercase equivalent to c, if such value exists, or c (unchanged) otherwise..

6.2.3.37 void Wait (long ms) [inline]

Wait some milliseconds. Make a task sleep for specified amount of time (in 1000ths of
a second).

Parameters:

ms The number of milliseconds to sleep.

Generated on Mon Oct 17 09:45:43 2011 for SPC by Doxygen

6.3 spmem.h File Reference 106

6.2.3.38 int write (const int value) [inline]

Write value to file. Write a value to the file associated with the specified handle. The
handle parameter must be a variable. The value parameter must be a constant, a con-
stant expression, or a variable. The type of the value parameter determines the number
of bytes of data written.

Parameters:

value The value to write to the file.

Returns:

The function call result.

6.2.3.39 void Yield (void) [inline]

Yield to another task. Make a task yield to another concurrently running task.

6.3 spmem.h File Reference

Constants defining superpro shared memory addresses.

Defines

• #define ADChannel0 @0x00
• #define ADChannel1 @0x01
• #define ADChannel2 @0x02
• #define ADChannel3 @0x03
• #define DigitalIn @0x08
• #define DigitalOut @0x09
• #define DigitalControl @0x0A
• #define StrobeControl @0x0B
• #define Timer0 @0x0C
• #define Timer1 @0x0D
• #define Timer2 @0x0E
• #define Timer3 @0x0F
• #define SerialInCount @0x10
• #define SerialInByte @0x11
• #define SerialOutCount @0x12

Generated on Mon Oct 17 09:45:43 2011 for SPC by Doxygen

6.3 spmem.h File Reference 107

• #define SerialOutByte @0x13
• #define DAC0Mode @0x18
• #define DAC0Frequency @0x19
• #define DAC0Voltage @0x1A
• #define DAC1Mode @0x1B
• #define DAC1Frequency @0x1C
• #define DAC1Voltage @0x1D
• #define LEDControl @0x1E
• #define SystemClock @0x1F

6.3.1 Detailed Description

Constants defining superpro shared memory addresses. spmem.h contains declarations
for superpro shared memory addresses.

License:

The contents of this file are subject to the Mozilla Public License Version 1.1 (the
"License"); you may not use this file except in compliance with the License. You may
obtain a copy of the License at http://www.mozilla.org/MPL/

Software distributed under the License is distributed on an "AS IS" basis, WITHOUT
WARRANTY OF ANY KIND, either express or implied. See the License for the
specific language governing rights and limitations under the License.

The Initial Developer of this code is John Hansen. Portions created by John Hansen
are Copyright (C) 2009-2011 John Hansen. All Rights Reserved.

--

Author:

John Hansen (bricxcc_at_comcast.net)

Date:

2011-09-01

Version:

1

6.3.2 Define Documentation

6.3.2.1 #define ADChannel0 @0x00

Reads the current voltage on A0 input. Value ranges from 0 to 1023. Updated every
millisecond. Read only.

Generated on Mon Oct 17 09:45:43 2011 for SPC by Doxygen

http://www.mozilla.org/MPL/

6.3 spmem.h File Reference 108

6.3.2.2 #define ADChannel1 @0x01

Reads the current voltage on A1 input. Value ranges from 0 to 1023. Updated every
millisecond. Read only.

6.3.2.3 #define ADChannel2 @0x02

Reads the current voltage on A2 input. Value ranges from 0 to 1023. Updated every
millisecond. Read only.

6.3.2.4 #define ADChannel3 @0x03

Reads the current voltage on A3 input. Value ranges from 0 to 1023. Updated every
millisecond. Read only.

6.3.2.5 #define DAC0Frequency @0x19

Control the frequency of the DAC0 analog output (O0). Read/write.

6.3.2.6 #define DAC0Mode @0x18

Control the operation of the DAC0 analog output (O0). See SuperPro analog output
mode constants for valid values. Read/write.

6.3.2.7 #define DAC0Voltage @0x1A

Control the voltage of the DAC0 analog output (O0). Read/write.

6.3.2.8 #define DAC1Frequency @0x1C

Control the frequency of the DAC1 analog output (O1). Read/write.

6.3.2.9 #define DAC1Mode @0x1B

Control the operation of the DAC1 analog output (O1). See SuperPro analog output
mode constants for valid values. Read/write.

6.3.2.10 #define DAC1Voltage @0x1D

Control the voltage of the DAC1 analog output (O1). Read/write.

Generated on Mon Oct 17 09:45:43 2011 for SPC by Doxygen

6.3 spmem.h File Reference 109

6.3.2.11 #define DigitalControl @0x0A

Write 8 bits to the digital control port B0 - B7. Set the mode of any of the 8 digital
signals. 1 == output, 0 == input.

6.3.2.12 #define DigitalIn @0x08

Read 8 bits from the digital port B0 - B7. Read only.

6.3.2.13 #define DigitalOut @0x09

Write 8 bits to the digital port B0 - B7. Read/Write.

6.3.2.14 #define LEDControl @0x1E

Control the operation of the two onboard LDEs (red and blue). See SuperPro LED
control constants for valid values. Read/write.

6.3.2.15 #define SerialInByte @0x11

Read the next serial byte from the serial port receive queue. Reading this value
removes the byte from the receive queue. Serial port input data is stored in a 255 byte
temporary buffer. Read only.

6.3.2.16 #define SerialInCount @0x10

Read the count of serial bytes in the receive queue. Enables a user program to check
if any data is available to be read from the serial port. Read only.

6.3.2.17 #define SerialOutByte @0x13

Write a byte to the serial port send queue. Serial port output data is stored in a 255
byte temporary buffer. Do not write to this address if SerialCount is 255. Write only.

6.3.2.18 #define SerialOutCount @0x12

Read the count of serial bytes in the send queue. Enables a user program to check
how many bytes are waiting to be sent out the serial port. Read only.

Generated on Mon Oct 17 09:45:43 2011 for SPC by Doxygen

6.3 spmem.h File Reference 110

6.3.2.19 #define StrobeControl @0x0B

Write 6 bits to the digital strobe port S0
- WR. Controls the operation of the six strobe outputs (S0, S1, S2, S3, RD, and WR).
See SuperPro Strobe control constants for valid values.

6.3.2.20 #define SystemClock @0x1F

Read the system clock. The system clock counts up continuously at one count per
millisecond. Read only.

6.3.2.21 #define Timer0 @0x0C

Read/write countdown timer 0. Counts down until it reaches zero (per millisecond).

6.3.2.22 #define Timer1 @0x0D

Read/write countdown timer 1. Counts down until it reaches zero (per millisecond).

6.3.2.23 #define Timer2 @0x0E

Read/write countdown timer 2. Counts down until it reaches zero (per millisecond).

6.3.2.24 #define Timer3 @0x0F

Read/write countdown timer 3. Counts down until it reaches zero (per millisecond).

Generated on Mon Oct 17 09:45:43 2011 for SPC by Doxygen

Index
abort

spcapi, 61
SPCDefs.h, 95

abs
spcapi, 61
SPCDefs.h, 95

ADChannel0
spmem.h, 107

ADChannel1
spmem.h, 107

ADChannel2
spmem.h, 108

ADChannel3
spmem.h, 108

CHAR_BIT
SPCDefs.h, 81
SPROLimits, 43

CHAR_MAX
SPCDefs.h, 81
SPROLimits, 43

CHAR_MIN
SPCDefs.h, 81
SPROLimits, 43

close
spcapi, 61
SPCDefs.h, 96

ctype API, 68
ctypeAPI

isalnum, 69
isalpha, 69
iscntrl, 70
isdigit, 70
isgraph, 70
islower, 71
isprint, 71
ispunct, 71
isspace, 72
isupper, 72
isxdigit, 72
tolower, 73
toupper, 73

CurrentTick

spcapi, 62
SPCDefs.h, 96

DAC0Frequency
spmem.h, 108

DAC0Mode
spmem.h, 108

DAC0Voltage
spmem.h, 108

DAC1Frequency
spmem.h, 108

DAC1Mode
spmem.h, 108

DAC1Voltage
spmem.h, 108

DAC_MODE_DCOUT
DacModeConstants, 39
SPCDefs.h, 81

DAC_MODE_PWMVOLTAGE
DacModeConstants, 39
SPCDefs.h, 81

DAC_MODE_SAWNEGWAVE
DacModeConstants, 39
SPCDefs.h, 81

DAC_MODE_SAWPOSWAVE
DacModeConstants, 39
SPCDefs.h, 82

DAC_MODE_SINEWAVE
DacModeConstants, 39
SPCDefs.h, 82

DAC_MODE_SQUAREWAVE
DacModeConstants, 39
SPCDefs.h, 82

DAC_MODE_TRIANGLEWAVE
DacModeConstants, 39
SPCDefs.h, 82

DacModeConstants
DAC_MODE_DCOUT, 39
DAC_MODE_PWMVOLTAGE, 39
DAC_MODE_SAWNEGWAVE, 39
DAC_MODE_SAWPOSWAVE, 39
DAC_MODE_SINEWAVE, 39
DAC_MODE_SQUAREWAVE, 39

INDEX 112

DAC_MODE_TRIANGLEWAVE,
39

Data type limits, 43
DIGI_PIN0

DigitalPinConstants, 41
SPCDefs.h, 82

DIGI_PIN1
DigitalPinConstants, 41
SPCDefs.h, 82

DIGI_PIN2
DigitalPinConstants, 41
SPCDefs.h, 82

DIGI_PIN3
DigitalPinConstants, 41
SPCDefs.h, 82

DIGI_PIN4
DigitalPinConstants, 41
SPCDefs.h, 82

DIGI_PIN5
DigitalPinConstants, 41
SPCDefs.h, 82

DIGI_PIN6
DigitalPinConstants, 41
SPCDefs.h, 83

DIGI_PIN7
DigitalPinConstants, 41
SPCDefs.h, 83

DigitalControl
spmem.h, 108

DigitalIn
spmem.h, 109

DigitalOut
spmem.h, 109

DigitalPinConstants
DIGI_PIN0, 41
DIGI_PIN1, 41
DIGI_PIN2, 41
DIGI_PIN3, 41
DIGI_PIN4, 41
DIGI_PIN5, 41
DIGI_PIN6, 41
DIGI_PIN7, 41

ExitTo
spcapi, 62
SPCDefs.h, 96

FALSE
MiscConstants, 38
SPCDefs.h, 83

INT_MAX
SPCDefs.h, 83
SPROLimits, 43

INT_MIN
SPCDefs.h, 83
SPROLimits, 44

isalnum
ctypeAPI, 69
SPCDefs.h, 96

isalpha
ctypeAPI, 69
SPCDefs.h, 97

iscntrl
ctypeAPI, 70
SPCDefs.h, 97

isdigit
ctypeAPI, 70
SPCDefs.h, 97

isgraph
ctypeAPI, 70
SPCDefs.h, 97

islower
ctypeAPI, 71
SPCDefs.h, 98

isprint
ctypeAPI, 71
SPCDefs.h, 98

ispunct
ctypeAPI, 71
SPCDefs.h, 98

isspace
ctypeAPI, 72
SPCDefs.h, 99

isupper
ctypeAPI, 72
SPCDefs.h, 99

isxdigit
ctypeAPI, 72
SPCDefs.h, 99

LED_BLUE
LEDCtrlConstants, 40

Generated on Mon Oct 17 09:45:43 2011 for SPC by Doxygen

INDEX 113

SPCDefs.h, 83
LED_RED

LEDCtrlConstants, 40
SPCDefs.h, 83

LEDControl
spmem.h, 109

LEDCtrlConstants
LED_BLUE, 40
LED_RED, 40

Log status constants, 45
LOG_STATUS_BUSY

LogStatusConstants, 46
SPCDefs.h, 83

LOG_STATUS_CLOSED
LogStatusConstants, 46
SPCDefs.h, 83

LOG_STATUS_OPEN
LogStatusConstants, 46
SPCDefs.h, 83

LogStatusConstants
LOG_STATUS_BUSY, 46
LOG_STATUS_CLOSED, 46
LOG_STATUS_OPEN, 46

LONG_MAX
SPCDefs.h, 84
SPROLimits, 44

LONG_MIN
SPCDefs.h, 84
SPROLimits, 44

MIN_1
SPCDefs.h, 84
TimeConstants, 48

MiscConstants
FALSE, 38
SERIAL_BUFFER_SIZE, 38
TRUE, 38

Miscellaneous SPC constants, 37
MS_1

SPCDefs.h, 84
TimeConstants, 48

MS_10
SPCDefs.h, 84
TimeConstants, 48

MS_100
SPCDefs.h, 84

TimeConstants, 48
MS_150

SPCDefs.h, 84
TimeConstants, 48

MS_2
SPCDefs.h, 84
TimeConstants, 48

MS_20
SPCDefs.h, 84
TimeConstants, 48

MS_200
SPCDefs.h, 84
TimeConstants, 48

MS_250
SPCDefs.h, 85
TimeConstants, 48

MS_3
SPCDefs.h, 85
TimeConstants, 49

MS_30
SPCDefs.h, 85
TimeConstants, 49

MS_300
SPCDefs.h, 85
TimeConstants, 49

MS_350
SPCDefs.h, 85
TimeConstants, 49

MS_4
SPCDefs.h, 85
TimeConstants, 49

MS_40
SPCDefs.h, 85
TimeConstants, 49

MS_400
SPCDefs.h, 85
TimeConstants, 49

MS_450
SPCDefs.h, 85
TimeConstants, 49

MS_5
SPCDefs.h, 85
TimeConstants, 49

MS_50
SPCDefs.h, 86
TimeConstants, 49

Generated on Mon Oct 17 09:45:43 2011 for SPC by Doxygen

INDEX 114

MS_500
SPCDefs.h, 86
TimeConstants, 50

MS_6
SPCDefs.h, 86
TimeConstants, 50

MS_60
SPCDefs.h, 86
TimeConstants, 50

MS_600
SPCDefs.h, 86
TimeConstants, 50

MS_7
SPCDefs.h, 86
TimeConstants, 50

MS_70
SPCDefs.h, 86
TimeConstants, 50

MS_700
SPCDefs.h, 86
TimeConstants, 50

MS_8
SPCDefs.h, 86
TimeConstants, 50

MS_80
SPCDefs.h, 86
TimeConstants, 50

MS_800
SPCDefs.h, 87
TimeConstants, 50

MS_9
SPCDefs.h, 87
TimeConstants, 51

MS_90
SPCDefs.h, 87
TimeConstants, 51

MS_900
SPCDefs.h, 87
TimeConstants, 51

open
spcapi, 62
SPCDefs.h, 100

pop
spcapi, 62

SPCDefs.h, 100
printf

spcapi, 63
SPCDefs.h, 100

Program slot constants, 44
push

spcapi, 63
SPCDefs.h, 101

putchar
spcapi, 63
SPCDefs.h, 101

puts
spcapi, 64
SPCDefs.h, 101

read
spcapi, 64
SPCDefs.h, 102

RotateLeft
spcapi, 64
SPCDefs.h, 102

RotateRight
spcapi, 64
SPCDefs.h, 102

Run
spcapi, 65
SPCDefs.h, 102

SCHAR_MAX
SPCDefs.h, 87
SPROLimits, 44

SCHAR_MIN
SPCDefs.h, 87
SPROLimits, 44

SEC_1
SPCDefs.h, 87
TimeConstants, 51

SEC_10
SPCDefs.h, 87
TimeConstants, 51

SEC_15
SPCDefs.h, 87
TimeConstants, 51

SEC_2
SPCDefs.h, 87
TimeConstants, 51

Generated on Mon Oct 17 09:45:43 2011 for SPC by Doxygen

INDEX 115

SEC_20
SPCDefs.h, 88
TimeConstants, 51

SEC_3
SPCDefs.h, 88
TimeConstants, 51

SEC_30
SPCDefs.h, 88
TimeConstants, 51

SEC_4
SPCDefs.h, 88
TimeConstants, 52

SEC_5
SPCDefs.h, 88
TimeConstants, 52

SEC_6
SPCDefs.h, 88
TimeConstants, 52

SEC_7
SPCDefs.h, 88
TimeConstants, 52

SEC_8
SPCDefs.h, 88
TimeConstants, 52

SEC_9
SPCDefs.h, 88
TimeConstants, 52

SERIAL_BUFFER_SIZE
MiscConstants, 38
SPCDefs.h, 88

SerialInByte
spmem.h, 109

SerialInCount
spmem.h, 109

SerialOutByte
spmem.h, 109

SerialOutCount
spmem.h, 109

sign
spcapi, 65
SPCDefs.h, 103

SizeOf
spcapi, 65
SPCDefs.h, 103

SLOT1
SlotConstants, 45

SPCDefs.h, 89
SLOT2

SlotConstants, 45
SPCDefs.h, 89

SLOT3
SlotConstants, 45
SPCDefs.h, 89

SLOT4
SlotConstants, 45
SPCDefs.h, 89

SLOT5
SlotConstants, 45
SPCDefs.h, 89

SLOT6
SlotConstants, 45
SPCDefs.h, 89

SLOT7
SlotConstants, 45
SPCDefs.h, 89

SlotConstants
SLOT1, 45
SLOT2, 45
SLOT3, 45
SLOT4, 45
SLOT5, 45
SLOT6, 45
SLOT7, 45

SPC API, 59
spcapi

abort, 61
abs, 61
close, 61
CurrentTick, 62
ExitTo, 62
open, 62
pop, 62
printf, 63
push, 63
putchar, 63
puts, 64
read, 64
RotateLeft, 64
RotateRight, 64
Run, 65
sign, 65
SizeOf, 65

Generated on Mon Oct 17 09:45:43 2011 for SPC by Doxygen

INDEX 116

sqrt, 66
StartTask, 66
stat, 66
Stop, 66
StopAllTasks, 67
StopProcesses, 67
Wait, 67
write, 67
Yield, 68

SPCAPIDocs.h, 73
SPCDefs.h, 74

abort, 95
abs, 95
CHAR_BIT, 81
CHAR_MAX, 81
CHAR_MIN, 81
close, 96
CurrentTick, 96
DAC_MODE_DCOUT, 81
DAC_MODE_PWMVOLTAGE, 81
DAC_MODE_SAWNEGWAVE, 81
DAC_MODE_SAWPOSWAVE, 82
DAC_MODE_SINEWAVE, 82
DAC_MODE_SQUAREWAVE, 82
DAC_MODE_TRIANGLEWAVE,

82
DIGI_PIN0, 82
DIGI_PIN1, 82
DIGI_PIN2, 82
DIGI_PIN3, 82
DIGI_PIN4, 82
DIGI_PIN5, 82
DIGI_PIN6, 83
DIGI_PIN7, 83
ExitTo, 96
FALSE, 83
INT_MAX, 83
INT_MIN, 83
isalnum, 96
isalpha, 97
iscntrl, 97
isdigit, 97
isgraph, 97
islower, 98
isprint, 98
ispunct, 98

isspace, 99
isupper, 99
isxdigit, 99
LED_BLUE, 83
LED_RED, 83
LOG_STATUS_BUSY, 83
LOG_STATUS_CLOSED, 83
LOG_STATUS_OPEN, 83
LONG_MAX, 84
LONG_MIN, 84
MIN_1, 84
MS_1, 84
MS_10, 84
MS_100, 84
MS_150, 84
MS_2, 84
MS_20, 84
MS_200, 84
MS_250, 85
MS_3, 85
MS_30, 85
MS_300, 85
MS_350, 85
MS_4, 85
MS_40, 85
MS_400, 85
MS_450, 85
MS_5, 85
MS_50, 86
MS_500, 86
MS_6, 86
MS_60, 86
MS_600, 86
MS_7, 86
MS_70, 86
MS_700, 86
MS_8, 86
MS_80, 86
MS_800, 87
MS_9, 87
MS_90, 87
MS_900, 87
open, 100
pop, 100
printf, 100
push, 101

Generated on Mon Oct 17 09:45:43 2011 for SPC by Doxygen

INDEX 117

putchar, 101
puts, 101
read, 102
RotateLeft, 102
RotateRight, 102
Run, 102
SCHAR_MAX, 87
SCHAR_MIN, 87
SEC_1, 87
SEC_10, 87
SEC_15, 87
SEC_2, 87
SEC_20, 88
SEC_3, 88
SEC_30, 88
SEC_4, 88
SEC_5, 88
SEC_6, 88
SEC_7, 88
SEC_8, 88
SEC_9, 88
SERIAL_BUFFER_SIZE, 88
sign, 103
SizeOf, 103
SLOT1, 89
SLOT2, 89
SLOT3, 89
SLOT4, 89
SLOT5, 89
SLOT6, 89
SLOT7, 89
sqrt, 103
StartTask, 103
stat, 104
Stop, 104
StopAllTasks, 104
StopProcesses, 104
STROBE_READ, 89
STROBE_S0, 89
STROBE_S1, 89
STROBE_S2, 90
STROBE_S3, 90
STROBE_WRITE, 90
tolower, 104
TONE_A3, 90
TONE_A4, 90

TONE_A5, 90
TONE_A6, 90
TONE_A7, 90
TONE_AS3, 90
TONE_AS4, 90
TONE_AS5, 91
TONE_AS6, 91
TONE_AS7, 91
TONE_B3, 91
TONE_B4, 91
TONE_B5, 91
TONE_B6, 91
TONE_B7, 91
TONE_C4, 91
TONE_C5, 91
TONE_C6, 92
TONE_C7, 92
TONE_CS4, 92
TONE_CS5, 92
TONE_CS6, 92
TONE_CS7, 92
TONE_D4, 92
TONE_D5, 92
TONE_D6, 92
TONE_D7, 92
TONE_DS4, 93
TONE_DS5, 93
TONE_DS6, 93
TONE_DS7, 93
TONE_E4, 93
TONE_E5, 93
TONE_E6, 93
TONE_E7, 93
TONE_F4, 93
TONE_F5, 93
TONE_F6, 94
TONE_F7, 94
TONE_FS4, 94
TONE_FS5, 94
TONE_FS6, 94
TONE_FS7, 94
TONE_G4, 94
TONE_G5, 94
TONE_G6, 94
TONE_G7, 94
TONE_GS4, 95

Generated on Mon Oct 17 09:45:43 2011 for SPC by Doxygen

INDEX 118

TONE_GS5, 95
TONE_GS6, 95
TONE_GS7, 95
toupper, 105
TRUE, 95
Wait, 105
write, 105
Yield, 106

spmem.h, 106
ADChannel0, 107
ADChannel1, 107
ADChannel2, 108
ADChannel3, 108
DAC0Frequency, 108
DAC0Mode, 108
DAC0Voltage, 108
DAC1Frequency, 108
DAC1Mode, 108
DAC1Voltage, 108
DigitalControl, 108
DigitalIn, 109
DigitalOut, 109
LEDControl, 109
SerialInByte, 109
SerialInCount, 109
SerialOutByte, 109
SerialOutCount, 109
StrobeControl, 109
SystemClock, 110
Timer0, 110
Timer1, 110
Timer2, 110
Timer3, 110

SPROLimits
CHAR_BIT, 43
CHAR_MAX, 43
CHAR_MIN, 43
INT_MAX, 43
INT_MIN, 44
LONG_MAX, 44
LONG_MIN, 44
SCHAR_MAX, 44
SCHAR_MIN, 44

sqrt
spcapi, 66
SPCDefs.h, 103

StartTask
spcapi, 66
SPCDefs.h, 103

stat
spcapi, 66
SPCDefs.h, 104

Stop
spcapi, 66
SPCDefs.h, 104

StopAllTasks
spcapi, 67
SPCDefs.h, 104

StopProcesses
spcapi, 67
SPCDefs.h, 104

STROBE_READ
SPCDefs.h, 89
StrobeCtrlConstants, 42

STROBE_S0
SPCDefs.h, 89
StrobeCtrlConstants, 42

STROBE_S1
SPCDefs.h, 89
StrobeCtrlConstants, 42

STROBE_S2
SPCDefs.h, 90
StrobeCtrlConstants, 42

STROBE_S3
SPCDefs.h, 90
StrobeCtrlConstants, 42

STROBE_WRITE
SPCDefs.h, 90
StrobeCtrlConstants, 43

StrobeControl
spmem.h, 109

StrobeCtrlConstants
STROBE_READ, 42
STROBE_S0, 42
STROBE_S1, 42
STROBE_S2, 42
STROBE_S3, 42
STROBE_WRITE, 43

SuperPro analog output mode constants,
38

SuperPro digital pin constants, 40
SuperPro LED control constants, 40

Generated on Mon Oct 17 09:45:43 2011 for SPC by Doxygen

INDEX 119

SuperPro Strobe control constants, 42
SystemClock

spmem.h, 110

Time constants, 46
TimeConstants

MIN_1, 48
MS_1, 48
MS_10, 48
MS_100, 48
MS_150, 48
MS_2, 48
MS_20, 48
MS_200, 48
MS_250, 48
MS_3, 49
MS_30, 49
MS_300, 49
MS_350, 49
MS_4, 49
MS_40, 49
MS_400, 49
MS_450, 49
MS_5, 49
MS_50, 49
MS_500, 50
MS_6, 50
MS_60, 50
MS_600, 50
MS_7, 50
MS_70, 50
MS_700, 50
MS_8, 50
MS_80, 50
MS_800, 50
MS_9, 51
MS_90, 51
MS_900, 51
SEC_1, 51
SEC_10, 51
SEC_15, 51
SEC_2, 51
SEC_20, 51
SEC_3, 51
SEC_30, 51
SEC_4, 52

SEC_5, 52
SEC_6, 52
SEC_7, 52
SEC_8, 52
SEC_9, 52

Timer0
spmem.h, 110

Timer1
spmem.h, 110

Timer2
spmem.h, 110

Timer3
spmem.h, 110

tolower
ctypeAPI, 73
SPCDefs.h, 104

Tone constants, 52
TONE_A3

SPCDefs.h, 90
ToneConstants, 54

TONE_A4
SPCDefs.h, 90
ToneConstants, 54

TONE_A5
SPCDefs.h, 90
ToneConstants, 54

TONE_A6
SPCDefs.h, 90
ToneConstants, 54

TONE_A7
SPCDefs.h, 90
ToneConstants, 54

TONE_AS3
SPCDefs.h, 90
ToneConstants, 54

TONE_AS4
SPCDefs.h, 90
ToneConstants, 54

TONE_AS5
SPCDefs.h, 91
ToneConstants, 54

TONE_AS6
SPCDefs.h, 91
ToneConstants, 55

TONE_AS7
SPCDefs.h, 91

Generated on Mon Oct 17 09:45:43 2011 for SPC by Doxygen

INDEX 120

ToneConstants, 55
TONE_B3

SPCDefs.h, 91
ToneConstants, 55

TONE_B4
SPCDefs.h, 91
ToneConstants, 55

TONE_B5
SPCDefs.h, 91
ToneConstants, 55

TONE_B6
SPCDefs.h, 91
ToneConstants, 55

TONE_B7
SPCDefs.h, 91
ToneConstants, 55

TONE_C4
SPCDefs.h, 91
ToneConstants, 55

TONE_C5
SPCDefs.h, 91
ToneConstants, 55

TONE_C6
SPCDefs.h, 92
ToneConstants, 55

TONE_C7
SPCDefs.h, 92
ToneConstants, 56

TONE_CS4
SPCDefs.h, 92
ToneConstants, 56

TONE_CS5
SPCDefs.h, 92
ToneConstants, 56

TONE_CS6
SPCDefs.h, 92
ToneConstants, 56

TONE_CS7
SPCDefs.h, 92
ToneConstants, 56

TONE_D4
SPCDefs.h, 92
ToneConstants, 56

TONE_D5
SPCDefs.h, 92
ToneConstants, 56

TONE_D6
SPCDefs.h, 92
ToneConstants, 56

TONE_D7
SPCDefs.h, 92
ToneConstants, 56

TONE_DS4
SPCDefs.h, 93
ToneConstants, 56

TONE_DS5
SPCDefs.h, 93
ToneConstants, 57

TONE_DS6
SPCDefs.h, 93
ToneConstants, 57

TONE_DS7
SPCDefs.h, 93
ToneConstants, 57

TONE_E4
SPCDefs.h, 93
ToneConstants, 57

TONE_E5
SPCDefs.h, 93
ToneConstants, 57

TONE_E6
SPCDefs.h, 93
ToneConstants, 57

TONE_E7
SPCDefs.h, 93
ToneConstants, 57

TONE_F4
SPCDefs.h, 93
ToneConstants, 57

TONE_F5
SPCDefs.h, 93
ToneConstants, 57

TONE_F6
SPCDefs.h, 94
ToneConstants, 57

TONE_F7
SPCDefs.h, 94
ToneConstants, 58

TONE_FS4
SPCDefs.h, 94
ToneConstants, 58

TONE_FS5

Generated on Mon Oct 17 09:45:43 2011 for SPC by Doxygen

INDEX 121

SPCDefs.h, 94
ToneConstants, 58

TONE_FS6
SPCDefs.h, 94
ToneConstants, 58

TONE_FS7
SPCDefs.h, 94
ToneConstants, 58

TONE_G4
SPCDefs.h, 94
ToneConstants, 58

TONE_G5
SPCDefs.h, 94
ToneConstants, 58

TONE_G6
SPCDefs.h, 94
ToneConstants, 58

TONE_G7
SPCDefs.h, 94
ToneConstants, 58

TONE_GS4
SPCDefs.h, 95
ToneConstants, 58

TONE_GS5
SPCDefs.h, 95
ToneConstants, 59

TONE_GS6
SPCDefs.h, 95
ToneConstants, 59

TONE_GS7
SPCDefs.h, 95
ToneConstants, 59

ToneConstants
TONE_A3, 54
TONE_A4, 54
TONE_A5, 54
TONE_A6, 54
TONE_A7, 54
TONE_AS3, 54
TONE_AS4, 54
TONE_AS5, 54
TONE_AS6, 55
TONE_AS7, 55
TONE_B3, 55
TONE_B4, 55
TONE_B5, 55

TONE_B6, 55
TONE_B7, 55
TONE_C4, 55
TONE_C5, 55
TONE_C6, 55
TONE_C7, 56
TONE_CS4, 56
TONE_CS5, 56
TONE_CS6, 56
TONE_CS7, 56
TONE_D4, 56
TONE_D5, 56
TONE_D6, 56
TONE_D7, 56
TONE_DS4, 56
TONE_DS5, 57
TONE_DS6, 57
TONE_DS7, 57
TONE_E4, 57
TONE_E5, 57
TONE_E6, 57
TONE_E7, 57
TONE_F4, 57
TONE_F5, 57
TONE_F6, 57
TONE_F7, 58
TONE_FS4, 58
TONE_FS5, 58
TONE_FS6, 58
TONE_FS7, 58
TONE_G4, 58
TONE_G5, 58
TONE_G6, 58
TONE_G7, 58
TONE_GS4, 58
TONE_GS5, 59
TONE_GS6, 59
TONE_GS7, 59

toupper
ctypeAPI, 73
SPCDefs.h, 105

TRUE
MiscConstants, 38
SPCDefs.h, 95

Wait

Generated on Mon Oct 17 09:45:43 2011 for SPC by Doxygen

INDEX 122

spcapi, 67
SPCDefs.h, 105

write
spcapi, 67
SPCDefs.h, 105

Yield
spcapi, 68
SPCDefs.h, 106

Generated on Mon Oct 17 09:45:43 2011 for SPC by Doxygen

	SPC Programmer's Guide
	Introduction
	The SPC Language
	Lexical Rules
	Comments
	Whitespace
	Numerical Constants
	String Constants
	Character Constants
	System Constants
	Identifiers and Keywords

	Program Structure
	Code Order
	Tasks
	Functions
	Variables
	Structures
	Arrays

	Statements
	Variable Declaration
	Assignment
	Control Structures
	The asm statement
	Other SPC Statements

	Expressions
	Conditions

	The Preprocessor
	#include
	#define
	## (Concatenation)
	Conditional Compilation

	SuperPro pre-defined system constants
	ADChannel0/1/2/3
	DigitalIn
	DigitalOut
	DigitalControl
	StrobeControl
	Timer0/1/2/3
	SerialInCount
	SerialInByte
	SerialOutCount
	SerialOutByte
	DAC0Mode/DAC1Mode
	DAC0Frequency/DAC1Frequency
	DAC0Voltage/DAC1Voltage
	LEDControl
	SystemClock

	Module Documentation
	Miscellaneous SPC constants
	Detailed Description
	Define Documentation

	SuperPro analog output mode constants
	Detailed Description
	Define Documentation

	SuperPro LED control constants
	Detailed Description
	Define Documentation

	SuperPro digital pin constants
	Detailed Description
	Define Documentation

	SuperPro Strobe control constants
	Detailed Description
	Define Documentation

	Data type limits
	Detailed Description
	Define Documentation

	Program slot constants
	Detailed Description
	Define Documentation

	Log status constants
	Detailed Description
	Define Documentation

	Time constants
	Detailed Description
	Define Documentation

	Tone constants
	Detailed Description
	Define Documentation

	SPC API
	Detailed Description
	Function Documentation

	ctype API
	Detailed Description
	Function Documentation

	File Documentation
	SPCAPIDocs.h File Reference
	Detailed Description

	SPCDefs.h File Reference
	Detailed Description
	Define Documentation
	Function Documentation

	spmem.h File Reference
	Detailed Description
	Define Documentation

