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Learning

What is Learning?

� "Learning denotes changes in a system that ... 
enable a system to do the same task more efficiently 
the next time." --Herbert Simon 

� "Learning is constructing or modifying 
representations of what is being experienced." --
Ryszard Michalski 
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Ryszard Michalski 
� "Learning is making useful changes in our minds." --

Marvin Minsky 

What is Machine Learning?

There are two ways that a system can improve:
1. By acquiring new knowledge

For example: acquiring new facts or skills

2. By adapting its behavior
For example: solving problems more accurately or efficiently
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For example: solving problems more accurately or efficiently

Machine Learning

� Why is learning necessary?
� learning is the hallmark of intelligence; a system that cannot learn is 

arguably not intelligent.
� without learning, everything is new; a system that cannot learn is not 

efficient because it rederives each solution and repeatedly makes the 
same mistakes. 

� Can be used to understand and improve efficiency of human learning. 
For example, use to improve methods for teaching and tutoring 
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For example, use to improve methods for teaching and tutoring 
people, as done in CAI -- Computer-aided instruction 

� Discover new things or structure that is unknown to humans. Example: 
Data mining 

� Fill in skeletal or incomplete specifications about a domain. Large, 
complex AI systems cannot be completely derived by hand and 
require dynamic updating to incorporate new information. Learning 
new characteristics expands the domain or expertise and lessens the 
"brittleness" of the system 

� Why is learning possible?
� because there are regularities in the world.



Major Paradigms of Machine Learning
� Rote Learning: 
� One-to-one mapping from inputs to stored representation.
� "Learning by memorization." 
� Association-based storage and retrieval.

� Learning by being told. 
� Induction: 
� Use specific examples to reach general conclusions 

Reinforcement: 
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� Reinforcement: 
� Only feedback (positive or negative reward) given at end of a sequence of 

steps. 
� Requires assigning reward to steps by solving the credit assignment 

problem--which steps should receive credit or blame for a final result? 
� Clustering: 
� Analogy. 
� Determine correspondence between two different representations 

� Genetic Algorithms
� Discovery: 
� Unsupervised, specific goal not given 

Supervised Learning

� For every input there is a target available
� The agent can generate an output based on input observations
� It also receives feedback from the environment to tell it how it should

respond
� A signed error vector can thus be computed and used to update the 

agent’s parameters
� Agent can thus learn a mapping between inputs and outputs
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� Agent can thus learn a mapping between inputs and outputs

Agent diff

Input 
Observations

Output 
Target

Error Feedback

Predicted 
Output

Unsupervised Learning
� There are only input observations
� The environment provides no feedback at all  
� Opposite extreme to supervised learning
� All the agent can do is to model the input data
� It may be able to develop efficient internal representations of the input 

data
� These representations may provide useful input to other learning 
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� These representations may provide useful input to other learning 
scheme that do interact with the environment

� Use it as a front end on supervised and reinforcement learning 
schemes
� Vision, audition sparse efficient coding strategies

Agent
Input Observations

Input Predictions

Reinforcement Learning
� For every input state the agent must choose an action
� It also receives feedback from the environment regarding how well it responded, 

but not what it should have done
� RL is learning with a critic, as opposed to learning with a teacher
� This scalar reinforcement can be used to indirectly update the agent’s 

parameters
� Agent can thus learn a mapping between input state and actions
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� Often we only get reward after a long sequence of actions.  
� How do we solve the credit assignment problem?

Agent
Input Observations

(discrete state)

Reinforcement Feedback

Action

(discrete)

Critic



How to learn optimal behavior?

� Thorndike’s law of effect (1911):

If an action leads to a satisfactory state of affairs, then the 
tendency of the system to produce that particular action is 
strengthened or reinforced.  Otherwise this tendency is 
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strengthened or reinforced.  Otherwise this tendency is 
weakened.

� Rewards
� Rewards play an important role in reinforcement learning.
� In fact, it is the only feedback the learner gets and it should 

be used to optimize action selection.

Grid World Example

States
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Allowed 
Actions

Consider the states as 
rooms

Actions correspond to 
passing through 
connecting doors

Goal State

G
G: Goal state 
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Reward Function

St St+1

When we take an action, 
there is an associated cost 
called the reward function for 
the action.

Here we define a reward 
function R = -1 per transition 

R = -1
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function R = -1 per transition 
which penalizes the length of 
the path taken.

This favors finding the 
shortest path from a given 
state to the goal.



Value Functions

-3 -2 -1 0

-4 -3 -2 -1

Value function represents the 
overall reward that can be 
accumulated moving from the 
given state to the goal.

Optimal values to reach the 
goal from each state are 
shown here .
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-5 -4 -3 -2

-6 -5 -4 -3

shown here .

Here, the value function for 
each state is the shortest 
number of steps to the goal 
multiplied by -1

Value Functions are Problem Dependent

-5 -4 -1 0

-4 -3 -2 -1
Changing the permitted 
transitions between the states 
will also change the optimal 
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-5 -4 -3 -2

-6 -5 -6 -7

will also change the optimal 
value functions

Policy to choose Optimal Path

-5 -4 -1 G

-4 -3 -2 -1

If we know the value 
functions, we can choose the 
optimal path from a target 
state T to the goal G.
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-5 -4 -3 -2

-6 -5 -6 T

We must use a valid action to 
move to the next state with 
the lowest value function (i.e. 
we must maximize the 
reward)

If we chose the action at 
random, the reward would be 
much less (i.e. it would take, 
on average, many more steps 
to get from T to G).

Reward and Value Functions

� Reward defines what is to be optimized
� It is the local value of the action from a given state
� The value function specifies the global value of a given state
� It takes into account future actions that will be carried out after the current 

one
V=-6
S

V=-4
R = -1 R = -2 R = -4
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� Observations:
� The value function for state Sa is lower than for state Sb

� However the local reward from T to state Sa is higher than for T to state Sb

� In this case using the local reward would result in a sub-optimal path from T to G

Sa
V=-4

G

V=-3 V=-2 V=-1
V=-4
Sb

T
V=-6

R = -1R = -1R = -1
R = -2

R = -1



Markov Decision Process (MDP)

MDP M  =  < S, A, T, R >
where

S: Finite set of states
{s1,s2,…,sn}

A: Finite set of actions {a1,a2,…ak}
T(s, a, s’): probability to make a transition

to state s’ if action a is used in state s

s

s’

a

Graphical representation
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to state s’ if action a is used in state s
R(s, a, s’): reward for making a transition 

from state s to state s’ by doing action 
a (also possible: R(s,a) and R(s) )

step = transition from one state to another
7 states
1 terminal state
2 actions

s1

Some Properties
The Markov Property: The current state 

and action give all possible 
information for predicting to which 
next state the agent will step. It does 
not matter how the agent arrived at 
its current state. (otherwise partially 
observable, compare chess to 
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s

s1

s2

s3

s4

s7
s6

s5

0.3
a

a

a

a

bbb

0.1

0.5

0.3

0.1
0.6

0.1

observable, compare chess to 
poker):

� States can be terminal (absorbing). 
Chains of steps will not be continued. 
Modelled as T(s,a,s)=1 (for all a) and 
R(s,a,s)=0.

� γ is the discount factor.

Policies, Rewards and Goals

� A deterministic policy π selects an action as a function of the 
current state

� The goal of an agent is to maximize some performance criterion. 
Among several, the discounted infinite horizon optimality 
criterion is often used:
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Discount factor γ weighs future rewards.

� Now the goal is to find the optimal policy as:

� There are            policies. How to find       ?

G

Example policy

Value Functions

� A value function (or: state utility function) represents an 
estimation of the expected sum of future rewards:
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� A Q-function (or: state-action utility function) represents the 
value for selecting an action in a particular state:

10

9

8

76

6

87

5

6

5 6

4
Example value function
(in a deterministic environment):



Bellman Equations
� The optimal value functions satisfy the following recursive 

Bellman optimality equations [Bellman 1957]

� For Q-functions, the following equations hold:
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� For Q-functions, the following equations hold:

� The relationship between Q* and V* is:

� Remarks:
� V* and Q* are uniquely determined
� π is not necessarily unique; many problems have multiple optimal 

policies.

Problem Setup and Possible Solutions
� When faced with a problem domain that is modeled as an 

MDP M = < S, A, T, R >, we have two cases:

1) Decision-theoretic planning (DTP)
If one has full knowledge about T and R, the setting is called model-
based, and one can use (offline) dynamic programming techniques to 
compute optimal value functions and policies. 
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2) Reinforcement Learning (RL)
If one does not know T and R, the setting is called model-free, and one 
has to interact (online) with the environment to get learning samples. 
This exploration enables one to learn similar value functions and policies 
as in the model-based setting.

� Models (T and R) are often not available to the learner, but sometimes
they can be learned (mixing both settings) (to which setting belongs
chess? or robot navigation?)

Policy Evaluation
� If we fix a policy π, then we can compute the exact value of a particular state. This 

amounts to passive learning, or equivalently, to simulating a Markov system.
� The exact value of each state is determined by a set of equations 

(n linear equations, n unknowns � exactly one solution)
� Take, for terminal states:

And for all others:
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� First method: solve the equations (e.g. Gaussian elimination):

� Second method: iterative procedure. Start with V(s)=0 for all states and repeat:

a large number of times for all non-terminal states

Reinforcement Learning
� RL: (T, R) not given, must be determined
� An RL agent learns a subjective (local) view of the world by interaction

with the environment

� We need a policy, which is tested to find a new policy
� Exploration of the state space needed
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G

Agent’s worldTrial = sequence of experiences



Sampling: Exploration vs Exploitation

� Instead of backups through a model (as in 
DP), RL uses actual experience to perform 
sample backups.

� Exploitation: the agent should choose the 
best current action to maximize reward intake

� Exploration: the agent should try out new 

G
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(unexplored) actions to find possibly even 
better options, and to visit unexplored parts of 
the state space

� Many types of (un)informed exploration. Often 
ε-greedy or Boltzmann

A generic model-free algorithm

For each episode do
t := 0
st∈S is initialized as the starting state
repeat

choose an action at

perform a in the environment

Explore/exploit Actual experience
(sample)
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perform at in the environment
observe the new state st+1 and receive reward rt

update T, R, Q and/or V using the 
experience < st, at, rt, st+1 >

st := st+1

until st is a goal state or maximum #steps reached

learning

Algorithms: Monte Carlo, TD-learning, Q-learning

Monte Carlo Sampling

� Determine for each state s in an epoch k the reward-to-go, 
which is the sum of all rewards in that epoch from the first 
moment that state is being visited in that epoch, until the epoch 
ends (denoted zk).

� Then an estimate of a state’s value is the average of all 
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rewards-to-go of all the times it was visited in an epoch.

� Can be implemented incrementally as

� Advantage: unbiased expected value of total return
� Disadvantage: converges very slowly

Temporal-Difference Learning
� Instead of using the complete future state-chain for updating the 

value of a state, we can just use the next state

� This idea forms the core of temporal-difference learning
� We do it often in real life. Using estimates to compute other 

estimates. This is called bootstrapping. The idea is to shift an 
estimate (e.g. V(s)) towards the desired direction.
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� For each step from state s to state s’ in an epoch do
� If s’ is terminal:

� If s’ is non-terminal:

� Here α is the learning rate
� For a fixed α learning does not converge fully, but if α becomes 

smaller with the number of times a state s is visited, (and all 
states are visited infinitely often), this method will converge to 
the real value of states.



Q-learning

� Q-learning [Watkins, 1989] changes a single Q-value based on the 
experience 

where 

Most often used method in model-free RL
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� Most often used method in model-free RL
� Simple to implement
� Off-policy (needed for various extensions such as HRL)
� Converges to the optimal Q-function if all state-action pairs are tried 

infinitely often (and the learning rate α decreases)
� Disadvantage: can take some time for rewards to propagate
� SARSA differs from Q-learning by taking                                  (on-

policy) 

RL for Quadruped Locomotion [Kohl04]

� Simple Policy-Gradient Example
� Optimize Gait for Sony-Aibo Robot
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� Use Parameterized Policy
� 12 Parameters

– Front + rear locus (height, x-pos, y-pos)
– Height of the front and the rear of the body

Quadruped Locomotion

� Policy: No notion of state – open loop control!
� Start with initial Policy 
� Generate t = 15 random policies Ri
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� is

� Evaluate Value of each policy on the real robot
� Estimate gradient for each parameter
� Update policy into the direction of the gradient

Quadruped Locomotion

� Estimation of the Walking 
Speed of a policy
� Automated process of the 

Aibos
� Each Policy is evaluated 3 

times
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times
� One Iteration (3 x 15 

evaluations) takes 7.5 
minutes



Quadruped Gait: Results
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Pegasus [Ng00]

� Policy Gradient Algorithms:
� Use finite time horizon, evaluate Value
� Value of a policy in a stochastic environment is hard to 

estimate
– => Stochastic Optimization Process

� PEGASUS:
� For all policy evaluation trials use fixed set of start states 
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� For all policy evaluation trials use fixed set of start states 
(scenarios)

� Use „fixed randomization“ for policy evaluation
– Only works for simulations!

� The same conditions for each evaluation trial
� => Deterministic Optimization Process!

– Can be solved by any optimization method
– Commonly Used: Gradient Ascent, Random Hill Climbing

Autonomous Helicopter Flight [Ng04a, 
Ng04b]

� Autonomously learn to fly an unmanned helicopter
� 70000 $ => Catastrophic Exploration! 

� Learn Dynamics from the observation of a Human 
pilot

� Use PEGASUS to:
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� Use PEGASUS to:
� Learn to Hover
� Learn to fly complex maneuvers
� Inverted Helicopter flight 

Helicopter Flight: Model Identification

� 12 dimensional state space
� World Coordinates (Position + 

Rotation) + Velocities
� 4-dimensional actions

� 2 rotor-plane pitch
� Rotor blade tilt
� Tail rotor tilt
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� Tail rotor tilt
� Actions are selected every 20 

ms



Helicopter Flight: Model Identification

� Human pilot flies helicopter, 
data is recorded
� 391s training data
� reduced to 8 dimensions 

(position can be estimated from 
velocities)

� Learn transition probabilities 
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� Learn transition probabilities 
P(st+1|st, at)
� supervised learning with locally 

weighted linear regression
� Model Gaussian noise for 

stochastic model
� Implemented a simulator for 

model validation

Helicopter Flight: Hover Control

� Desired hovering position : 
� Very Simple Policy Class
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� Edges are optained by human prior knowledge
� Learns more or less linear gains of the controller

� Quadratic Reward Function:
� punishment for deviation of desired position and orientation

Helicopter Flight: Hover Control
� Results:

� Better performance than Human Expert (red)
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Helicopter Flight: Flying maneuvers

� Fly 3 manouvers from the most difficult RC helicopter 
competition class

� Trajectory Following:
� punish distance from projected point on trajectory
� Additional reward for making progress along the trajectory
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Helicopter Flight: Inverse Flight
� Very difficult for humans

� Unstable!
� Recollect data for inverse 

flight
� Use same methods as before

� Learned in 4 days!
� from data collection to flight 
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� from data collection to flight 
experiment

� Stable inverted flight 
controller
� sustained position

High Speed Obstacle Avoidance 
[Michels05]

� Obstacle Avoidance with RC car in unstructured 
Environments

� Estimate depth information from monocular cues
� Learn controller with PEGASUS for obstacle 

avoidance
� Graphical Simulation : Does it work in the real environment?
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� Graphical Simulation : Does it work in the real environment?

Estimate Depths Information:

� Supervised Learning
� Divide image into 16 horizontal stripes

– Use features of the strip and the neighbored strips as 
input vectors.

� Target Values (shortest distance within a strip) 
either from simulation or laser range finders
Linear Regression
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� Linear Regression
� Output of the vision system

� angle of the strip with the largest 
distance

� Distance of the strip

Obstacle Avoidance: Control
� Policy: 6 Parameters

� Again, a very simple 
policy is used
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Again, a very simple 
policy is used

� Reward: 
� Deviation of the desired 

speed, Number of 
crashes



Obstacle Avoidance: Results

� Using a graphical simulation to train the vision system also 
works for outdoor environments
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RL for Biped Robots

� Often used only for simplified planar models
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� Poincare-Map based RL [Morimoto04]
� Dynamic Planning [Stilman05]

� Other Examples for RL in real robots:
� Strongly Simplify the Problem: [Zhou03]

Poincare Map-Based RL
� Improve walking controllers with RL
� Poincare map: Intersection-points of an n-dimensional 

trajectory with an (n-1) dimensional Hyperplane
� Predict the state of the biped a half cycle ahead at the phases : 
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Poincare Map

� Learn Mapping:

� Input Space :  x = (d, d‘)
– Distance between stance foot and body

� Action Space : 
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� Action Space : 

– Modulate Via-Points of the joint trajectories

� Function Approximator: Receptive Field 
Locally Weighted Regression (RFWR) with a 
fixed grid



Via Points

� Nominal Trajectories from 
human walking patterns
� Control output 

is used to modulate via points 
with a circle 
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with a circle 
� Hand selected via-points
� Increment via-points of one joint 

by the same amount

Learning the Value function

� Reward Function:
� 0.1 if height of the robot > 0.35m
� -0.1 else

� Standard SemiMDP update rules 
� Only need to learn the value function 

for            and  
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for            and  
� Model-Based Actor-Critic Approach

� A … Actor
� Update Rule: 

Results:

� Stable walking performance after 80 trials
� Beginning of 

Learning
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� End of Learning


